Our Projects

Agile DSP-based Optical Transmission Systems

OPN7.pngWith exponential traffic growth projected from mobile and cloud applications, optical networks powering the Internet backbone will require orders-of-magnitude transmission capacity gains. At the core of our innovation in this area are agile digital signal processing (DSP)-based approaches, including digital Nyquist spectral shaping, DSP-based nonlinearity compensation, and advanced soft-decision forward error correction (FEC) that optimize spectrum utilization, maximize transmission reach, and provide data rate flexibility. Our recent world-leading achievements in this area include the first real-time transmission of a 1Tb/s Nyquist superchannel over 7,200km using only erbium doped fiber amplifier (EDFA) repeaters, proving that an ultra high-speed 1Tb/s optical superchannel can have transoceanic reach.

-Read more

Multidimensional Optical Processing

opn5.pngAfter setting the standing 100Tb/s world-record for the transmission capacity of single-mode optical fiber deployed in current networks, we are now leading a forward-looking investigation of the transmission capacity potential of multidimensional optical processing and coded modulation in space division multiplexed (SDM) optical transmission systems, wherein different spatial modes in a single fiber can be used as parallel data channels to increase aggregate transmission capacity. By employing all available degrees of freedom in a SDM system using few mode fiber (FMF), our novel multidimensional processing and coded modulation designs span a multidimensional signal space, featuring in-phase, quadrature, spatial mode, and dual polarization co-ordinates, notably outperforming conventional approaches.

-Read more

Optics and Photonics for Social ICT

opn8.pngThe high-speed, high-precision, energy-efficient nature of optics and photonics makes it ideally suited for next-generation ICT-based social solutions that drive societal well-being and efficiency. With our world-leading academic partners, we are investigating state-of-the-art optics and photonics for social value innovations, including safety and security solutions and environmental sensing.

-Read more

Software-defined Optical Networking

opn2.pngSoftware defined networking (SDN) is an emerging technology that decouples network control from forwarding, making the network programmable to simplify management and enable fast provisioning. While SDN has traditionally considered small scale networks and higher-layer applications, our research focuses on extending SDN to large-scale optical networks and the fundamental photonic, WDM, SONET/SDH and OTN layers. From the optical core, to metro, access, datacenter, and mobile backhaul/fronthaul segments, we are leading the charge in software-defined optical networking through innovative network virtualization and programmability via OpenFlow-enabled control of all major optical elements, including adaptive optical amplifiers, flex-grid switching elements, and multi-degree transponders.

-Read more