
Mining Lines in the Sand: On Trajectory Discovery From
Untrustworthy Data in Cyber-Physical System

Lu-An Tang1, Xiao Yu1, Quanquan Gu1, Jiawei Han1, Alice Leung2, Thomas La Porta3

1Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA;
2BBN Technology, Cambridge, MA, USA

3Dept. of Computer Science, Pennsylvania State University, University Park, PA, USA
{tang18, xiaoyu1, qgu3, hanj}@illinois.edu, aleung@bbn.com, tlp@cse.psu.edu

ABSTRACT
A Cyber-Physical System (CPS) integrates physical (i.e.,
sensor) devices with cyber (i.e., informational) components
to form a context sensitive system that responds intelligently
to dynamic changes in real-world situations. The CPS has
wide applications in scenarios such as environment moni-
toring, battlefield surveillance and traffic control. One key
research problem of CPS is called“mining lines in the sand”.
With a large number of sensors (sand) deployed in a desig-
nated area, the CPS is required to discover all the trajec-
tories (lines) of passing intruders in real time. There are
two crucial challenges that need to be addressed: (1) the
collected sensor data are not trustworthy; (2) the intruders
do not send out any identification information. The sys-
tem needs to distinguish multiple intruders and track their
movements. In this study, we propose a method called LiSM
(Line-in-the-Sand Miner) to discover trajectories from un-
trustworthy sensor data. LiSM constructs a watching net-
work from sensor data and computes the locations of in-
truder appearances based on the link information of the
network. The system retrieves a cone-model from the histor-
ical trajectories and tracks multiple intruders based on this
model. Finally the system validates the mining results and
updates the sensor’s reliability in a feedback process. Exten-
sive experiments on big datasets demonstrate the feasibility
and applicability of the proposed methods.

Categories and Subject Descriptors
H.2 [Database Applications]: Data Mining

Keywords
Cyber-physical system, sensor network, trajectory

1. INTRODUCTION
A Cyber-Physical System (CPS) is an integration of sen-

sor networks with informational devices [2]. The CPS em-
ploys a large number of low-cost, densely-deployed sensors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

sensors

(i.e., sand)

seismic, acoustic and

magnetic sensors

data center

analyzing the

sensor records and

mining the lines

intruder o1

intruder o1

intruder o2

intruder o2

gateway sensors

transmitting the

sensor records to

the data center

Figure 1: The Framework of Battlefield CPS

to watch over designated areas and automatically discover
passing intruders. Such a system has many promising appli-
cations in both military and civilian fields, including missile
defense [4], battlefield awareness [3, 15], traffic control [9,
17], neighborhood watch [6], environment monitoring [16]
and wildlife tracking [7]. The key problem in the above ap-
plications is called “mining lines in the sand” [1], i.e., discov-
ering the trajectories of passing intruders from the collected
sensor data.

Figure 1 shows the framework of a battlefield CPS: The
sand (seismic, acoustic and magnetic sensors) is deployed in
a designated area. It constantly collects signals of vibration,
sound and magnetic force from the environment. When an
intruder passes by, the sensors detect a signal change and
send out detection records. The system analyzes the col-
lected data and discovers the intruder trajectories in real
time. Such a system can help military forces see through
the “fog of war” and protect troops and bases on the battle-
field.

However, the topic of “mining lines in the sand” is con-
sidered one of the major challenges in CPS research field,
partly due to the following problems:

• Untrustworthy data: Many deployment experiences have
shown that untrustworthy (i.e., faulty) data is the most
serious problem that impacts CPS performance [13, 16].
Untrustworthy data are generated due to various reasons,
including hardware failure, communication limits, envi-
ronmental influences and so on. It is difficult to filter

them out solely based on the signal value, because the
values of faulty signals are similar to correct ones.

• Tracking intruders: There are usually multiple intruders
in the monitoring area and the system is required to track
all of them. Since the intruders do not send out any iden-
tification information, the system has to distinguish them
and track their movements. Many previous methods make
the assumption of single intruder and cannot discover mul-
tiple ones in real applications.

• Big data: A CPS usually contains hundreds, even thou-
sands of sensors [2]. Each sensor generates a data record
every few minutes; such records form a big dataset. In
several applications, actions must be taken immediately
to deal with the intruders. The system is required to dis-
cover trajectories in real time.

In this study, we propose a novel system called LiSM
(Line-in-the-Sand Miner) to discover intruder trajectories
from untrustworthy sensor data. LiSM first constructs a
watching network to model the relationship among the sen-
sors, data records and intruders. Then LiSM detects the
intruder’s appearances based on the link information of the
watching network. To track multiple intruders, a cone model
is proposed to generate the intruder trajectories. The sys-
tem employs a validation process to filter out false positives
and updates sensor reliability scores. The technical contri-
butions of this study are summarized as follows.

• We construct a watching network to model the relation-
ship among the sensors, records and intruders. Such a
network helps locate the intruder appearances in every
timestamp.

• We propose a cone model to track multiple intruders. The
cone model is an effective tool to generate trajectories
from the detected intruder appearances.

• The system validates the candidate results and filters out
false positives. Then the system updates the sensor relia-
bility scores in a feedback process.

• We conduct extensive experiments to evaluate the effec-
tiveness and efficiency of proposed methods on big datasets.
The experiment results show that our approach yields
higher precision and recall than existing methods.

The rest of the paper is organized as follows. Section
2 introduces the background knowledge and problem for-
mulation; Section 3 proposes the techniques of constructing
the watching network, Section 4 introduces the trajectory
mining methods; Section 5 conducts the performance eval-
uations; Section 6 briefly comments on related work; and
Section 7 concludes the paper.

2. PROBLEM STATEMENT
Recent advances in sensor technology have produced many

types of sensors for area-watching purposes. Such sensors
can be roughly classified into two categories by mechanism:
(1) Active sensor (e.g., the infrared sensors and radar sen-
sors): these sensors radiate signal pulses and detect ob-
jects by the echo bouncing off the intruders; (2) Passive
sensor (e.g., the acoustic sensors, seismic sensors and mag-
netic sensors): these sensors only receive signals from the
environment. Active sensors achieve higher accuracy, but
require significant more power to operate and drain batter-
ies quickly. Furthermore, when active sensors radiate signal
pulses, they are at high risk of being detected by the intrud-

s1

o1

s2

s3

s4

s5s6

s7

record

r1,1

r2,1

r4,1

r5,1

r7,1

center

(97,109)

(95,123)

(105,99)

(125,84)

(92,98)

r3,1 (105,107)

intruder

o1

position

(100, 100)

r1,1

r2,1

r3,1

r4,1

r5,1

r7,1

radius

10

10

8

7

6

7

Figure 2: Example: The Detection Records

ers. As a result, the CPS is usually deployed with a large
number of low-cost, energy-saving passive sensors.

Passive sensors constantly collect signals of sound, vibra-
tion and magnetic forces from the environment. When an
intruder passes by, the sensors detect it based on the signal
changes. However, due to hardware limitation, the sensors
can only report the area of an intruder’s possible appear-
ance, rather than a concrete point location. In this study,
we model the reported area as a planar region bounded by
a circle.

Definition 1. (Detection Record) Let si be a sensor and
tj be a timestamp, the detection record ri,j is generated by
si to indicate the possible area of an intruder’s appearance in
tj . ri,j={cen(ri,j), rad(ri,j)}, where cen(ri,j) and rad(ri,j)
are the center and radius of the area.

Example 1. Figure 2 shows a list of detection records in
time t1. The solid triangle node is the intruder o1. The
round nodes are nearby sensors watching the area where
o1 passes. The solid round nodes (red) are the responding
sensors that send out detection records, such as s1, s2 and
s7. The centers of the estimated regions are tagged as hollow
triangles. Sensor s6 is a non-responding sensor that does not
generate any detection record. It is tagged as a shadowed
round node (blue).

Example 1 reveals three major problems with passive sen-
sors: (1) Even when the intruder is detected by multiple
sensors, each sensor reports the intruder’s appearance with
a margin of error. Those detection records should be ag-
gregated for a more accurate result; (2) Some false positive
records are generated, such as r2,1 and r5,1. The system
must filter them out; (3) The sensor, s6, should send out a
detection record but it fails to do so. It is a false negative.

Definition 2. (Valid Detection) Let qk,j be the position
of intruder ok in time tj . A record ri,j is a valid detec-
tion if there exists an intruder ok that dist(cen(ri,j), qk,j) ≤
rad(ri,j).

False positive and false negative records are caused by
various reasons, such as the wind blowing and animal move-
ments. Sensor reliability is a critical factor that impacts the
quality of detection results. We introduce two measurements
of the sensor’s reliability, as defined below.

Definition 3. (Robustness) Let s be a sensor, the ro-
bustness ϕ(s) denotes the proportion of valid detections in
all the records generated by s.

Definition 4. (Sensitivity) Let s be a sensor, the sen-
sitivity ψ(s) denotes the probabilities that s sends out a

Notation Explanation Notation Explanation

S the sensor set si, sj, sk the sensors

O the intruder set oi, oj, ok the intruders

Rj the record set in tj ri,j the detection record by

sensor si at tj

ti, tj the time stamp qk,j the position of ok in tj

pi,j, pk,j the intruder appearance (pi,j) the trustworthiness of pi,j

Li, Lk the intruder trajectory
kL the -recent trajectory

(si) the robustness of si (si) the sensitivity of si

S(ri,j),

S(pk,j)

the watching sensor set

of ri,j / pk,j

Sr(ri,j),

Sr(pk,j)

the responding sensor set

of ri,j / pk,j

Sn(ri,j),

Sn(pk,j)

the non-responding

sensor set of ri,j / pk,j

 Ej(Lk) the expectation of Lk

Gj the watching network

in time tj

 the decay factor

Figure 3: List of Notations

valid detection record when an intruder passes through s’s
watching area.

Knowledge of the sensor’s robustness and sensitivity are
important for filtering out false data. However, the two
scores may change over time. In the beginning, the sensor’s
robustness and sensitivity are both high. As time elapses,
sensors may be damaged by the harsh environment, or run
out of battery power. Therefore, both scores will drop and
they should be dynamically updated based on the detection
results.

The intruder is an object entering the watching area. The
system discovers the intruder’s movement as an intruder tra-
jectory, which is a sequence of intruder appearances in dif-
ferent timestamps.

Definition 5. (Intruder Trajectory) Let ok be an in-
truder and tj be a timestamp; the intruder appearance pk,j

is a spatial coordinate estimated by the system to indicate
ok’s position in tj . The intruder trajectory Lk is a sequence
of ok’s appearances, Lk = {pk,1, pk,2, . . . , pk,n}.

Since users are only interested in trajectories that are long
enough, they may set a threshold δ on the trajectory size.
In addition, the sensor data arrive continuously in a data
stream format. The system cannot output the results after
scanning the whole dataset. Users require intruder trajecto-
ries to be discovered in the data stream.

Now we formally define the problem of “mining lines in
the sand”.

Problem Statement: Let S be the set of sensors and R be
the sensor data arriving by time, R = {R1, R2, . . ., Rj ,. . .},
where Rj = {r1,j , r2,j , . . ., rm,j}. The sensors’ locations are
fixed and their robustness and sensitivity scores are initial-
ized. Given a length threshold δ, the task of “mining lines
in the sand” is to discover the set of intruder trajectories
L={L1, L2, . . ., Lk} in real time, where size(Lk) ≥ δ.

Note that the total number of intruders is not known in
advance. LiSM is required to discover the trajectories of all
the intruders entering the watching area. We will introduce
the detailed techniques of LiSM in the following sections.
Figure 3 lists the notations used throughout this paper.

3. THE WATCHING NETWORK
In Example 1, s1, s3 and s4 all detect the appearance of

intruder o1. However, another nearby sensor, s6, should de-
tect the intruder but does not generate any record. Such
non-responding sensor disagrees with its responding neigh-

bors. Therefore, the first task of LiSM is to retrieve the
hidden relationships of these sensors and intruders.

Definition 6. (Watching Sensors) Let S be the sensor
set and ri,j be a detection record, the watching sensor set
S(ri,j) = {s|s ∈ S, dist(s, cen(ri,j)) < range(s)+rad(ri,j)},
where dist(s, cen(ri,j)) denotes the distance between sensor
s and the center of ri,j , range(s) is s’s maximum sensing
range.

Theoretically, if there is a real intruder appearing in the
reported area of ri,j , all the sensors of S(ri,j) should send
out detection records. However, only a subset of them send
records to indicate the intruder’s appearance around ri,j .
The set of watching sensors is partitioned into two parts of
responding sensors and non-responding sensors.

Definition 7. (Responding Sensors) Let ri,j be a de-
tection record, and S(ri,j) be the watching sensor set of
ri,j , the responding sensor set Sr(ri,j) = {sk|sk ∈ S(ri,j),
dist(cen(rk,j), cen(ri,j)) ≤ rad(rk,j) + rad(ri,j)}, the non-
responding sensor set Sn(ri,j) = S(ri,j) − Sr(ri,j).

Based on Definitions 6 and 7, we can construct a watching
network. This network contains nodes representing sensors
and records. Two types of links are constructed in the net-
work: positive links connect records to responding sensors
and negative links connect records to non-responding sen-
sors.
Example 2. Figure 4 shows a watching network constructed
from the records in Example 1. For each record ri,j , the
system draws a circle with center at cen(ri,j) and radius
as range(s) + rad(ri,j). The watching sensors S(ri,j) are
located inside this circle (We only draw a circle of r4,1 in
Figure 4 for simplicity). The system then connects records
with positive links (solid lines) to responding sensors, and
generates negative links (dashed lines) between records and
non-responding sensors. Since sensor s6 does not send any
record, it has negative links to all the related records. Note
that even though s2 is a watching sensor of r4,1 and s2 sends
out a detection record r2,1, the distance between cen(r4,1)
and cen(r2,1) is larger than rad(r4,1)+rad(r2,1), thus the
link between s2 and r4,1 is a negative link.

s1

s2

s3

s4

s5s6

s7

r1,1

r2,1

r3,1

r4,1

r5,1

r7,1

s1

s2

s3

s5

s6

s4

s7

r2,1

r1,1

r3,1

r7,1

r4,1

r5,1

Figure 4: Example: The Watching Network

In the sensor data, many detection records are caused by
the same intruder, e.g., r1,1, r3,1 and r4,1 are caused by
intruder o1. Such records are called homologous records.
Definition 8. (Homologous Records) Let qk,j be the
position of intruder ok in time tj and Rj be the detection
record set in tj . The homologous record set Hk,j = {r|ri,j ∈
Rj , dist(cen(ri,j), qk,j) ≤ rad(ri,j)}.

If the intruder’s position, qk,j , is known in advance, the
system can easily find the homologous records. However,
the intruder’s position is exactly required as the mining re-
sult. The system has to approximate the homologous records
based on the following property.

Property 1. Let Hk,j be a homologous record set in tj ,
ri,j , rl,j ∈ Hk,j be two records, and si, sl be the sensors that
send out those records. Then si is a responding sensor of
rl,j and sl is a responding sensor of ri,j .

Proof : Let qk,j be the position of the corresponding in-
truder in Hk,j . According to Definition 8, dist(cen(ri,j), qk,j)
≤ rad(ri,j) and dist(cen(rl,j), qk,j) ≤ rad(rl,j).

Based on triangle inequality, dist(cen(ri,j),cen(rl,j)) ≤
dist(cen(ri,j),qk,j) + dist(cen(rl,j),qk,j)≤ rad(ri,j) + rad(rl,j).

By Definition 7, si is a responding sensor of rl,j and sl is
a responding sensor of ri,j .

The homologous record sets can be generated on the watch-
ing network. The system first picks a record as the seed to
initialize a homologous record set, and retrieves all the re-
sponding sensors following the positive links. The records
of those responding sensors are checked and added to the
homologous record set.

Once the homologous record set is generated, we can es-
timate the position of an intruder appearance with Eq.1,
where λi,j is a normalized weight based on the radius of
ri,j . The records with with lower uncertainty (i.e., smaller
radius) have higher weights in determining the position of
intruder appearance. Note that we adopt a linear model
to compute λi,j for general cases, the weight computation
can be modified based on specific signal decay models of the
sensors.

pk,j =
∑

ri,j∈Hk,j

λi,j · cen(ri,j)

λi,j = 1− rad(ri,j)∑
rl,j∈Hk,j

rad(rl,j)
(1)

Then the system retrieves the set of watching sensors for
the newly computed intruder appearance and finds its re-
sponding and non-responding sensors.

Definition 9. Let S be the sensor set and pk,j be an in-
truder appearance, the watching sensor set S(pk,j) = {s|s ∈
S, dist(s, pk,j) < range(s)}.

Definition 10. Let pk,j be an intruder appearance, and
S(pk,j) is the watching sensor set of pk,j , the responding
sensor set Sr(pk,j) = {si|si ∈ S(pk,j), dist(pk,j ,cen(ri,j)) ≤
rad(ri,j)}, the non-responding sensor set Sn(pk,j) = S(pk,j)-
Sr(pk,j).

The intruder appearances are added as new nodes to the
watching network. Similarly, the positive and negative links
are connected between the sensors and the appearances, as
shown in Figure 5.

With the link information of the watching network, we
can estimate the trustworthiness of each intruder appear-
ance based on the sensor’s robustness and sensitivity. For
an appearance pk,j , let si ∈ Sr(pk,j) be a responding sensor,
and sj ∈ Sn(pk,j) be non-responding sensor. If pk,j is a real
appearance, then si reports a valid detection and sj is a false
negative. The probability of pk,j being a valid detection is
calculated as Eq.2, where ϕ(si) is the robustness of si and

s1

s2

s3

s5

s6

s4

s7

r2,1

r1,1

r3,1

r7,1

r4,1

r5,1

p1,1

p2,1

p3,1

s1

s2

s3

s4

s5s6

s7

r1,1

r2,1

r3,1

r4,1

r5,1

r7,1

p1,1

p2,1

p3,1

Figure 5: Example: The Watching Network with
Intruder Appearances

ψ(sj) is the sensitivity of sj .

Pr (pk,j)
+ =

∏

si∈Sr(pk,j)

ϕ(si) ·
∏

sj∈Sn(pk,j)

(1− ψ(sj)) (2)

Similarly, the probability of pk,j being a false positive can
be written as Eq.3.

Pr (pk,j)
− =

∏

si∈Sr(pk,j)

(1− ϕ(si)) ·
∏

sj∈Sn(pk,j)

ψ(sj) (3)

The trustworthiness of intruder appearance, τ(pk,j), is
then calculated as Eq.4.

τ(pk,j) = log
Pr (pk,j)

+

Pr (pk,j)
−

∝
∑

si∈Sr(pk,j)

ϕ(si)

1− ϕ(si)
+

∑

sj∈Sn(pk,j)

1− ψ(sj)

ψ(sj)
(4)

Figure 6 lists the algorithm to detect the intruder appear-
ances. The algorithm first scans each detection record and
retrieves the responding and non-responding sensors (Lines
1 – 4). Then the system initializes the homologous record
Hk,j by randomly picking a seed record from the watching
network (Lines 6 – 7). For each unvisited record ri,j in Hk,j ,
the algorithm retrieves ri,j ’s responding sensors and checks
its record rl,j . If rl,j does not belong to any existing ho-
mologous record sets and the distances from rl,j to all other
records of Hk,j is less than the sum of the radius, rl,j is then
added to Hk,j (Lines 8 – 14). Once Hk,j is generated, the
system calculates the intruder appearance pk,j and adds it
to the network (Lines 15 – 18).

4. TRAJECTORY GENERATION
The watching network discovers the intruder appearances

in each snapshot. It is an effective tool for “mining dots in
the sand”. However, a more critical task is “connecting the
dots as lines”. Since the intruders do not send out any iden-
tification information, the system has to distinguish them
automatically.

After mining the intruder appearances in the first snap-
shot, LiSM initializes a set of candidate trajectories. Each
candidate trajectory contains a discovered intruder appear-
ance. In the following snapshots, the system matches the
newly detected intruder appearances with the candidate tra-
jectories. The appearances with the highest matching prob-
abilities are added to the corresponding candidate trajecto-
ries.

Algorithm 1. The Intruder Appearance Detection

Input: The record set Rj in time tj, the sensor set S.
Output: The watching network Gj.

1. initialize Gj;

2. for each detection record ,

3. add , to Gj;

4. compute (,) and (,), construct the links;

5. repeat
6. random select a record as the seed;

7. initialize homologous record set , by the seed;

8. for each unvisited record , ,

9. tag , as visited;

10. for each responding sensor sl in ,

11. if , does not belong to any record set

12. for each record , ,

13. if ((,), (,)) , + (,)

14. add , to , ;

15. compute the intruder appearance , from , ;

16. add , to Gj;

17. compute , and , , construct the links;

18. calculate (,);

19. until all the records of Gj are processed;
20. return Gj;

Figure 6: Algoirthm: The Intruder Appearance De-
tection

Let pi,j be an intruder appearance in time tj , Lk be a can-
didate trajectory, the trustworthiness of pi,j belonging to Lk

is computed as shown in Eq.5, where τ(pi,j) is the trustwor-
thiness of pi,j , and P (pi,j , Lk) is the matching probability
of pi,j and Lk.

τ(pi,j ∈ Lk) = τ(pi,j) · P (pi,j , Lk) (5)

The key issue is computing the matching probability be-
tween an intruder appearance and a candidate trajectory.
To this end, we propose the cone model. This model stores
the intruder’s recent moving history and predicts the in-
truder’s next move in a cone area. The detected intruder
appearances are projected on to the area to compute the
matching probability.

Definition 11. (ω-recent Trajectory) Let Lk be the
trajectory of intruder ok, tj be the current timestamp and ω
be a positive number, ω ≤ size(Lk). The ω-recent trajectory
Lω

k is a subset of Lk, Lω
k = {pk,j−ω, pk,j−ω+1, . . ., pk,j−1}.

The ω-recent trajectory contains the ω-latest appearances
of intruder ok before time tj . It is a short history of the in-
truder’s movement. The system can calculate ok’s recent
moving speed and direction based on Lω

k . The mean and
deviation of the intruder speed in period [tj−ω, tj−1] are cal-
culated as shown in Eqs. 6 and 7.

v̄k =

j−2∑
i=j−ω

dist(pk,i, pk,i+1)

(tj−1 − tj−ω)
(6)

σ(vk) =

√√√√
j−2∑

i=j−ω

dist(pk,i, pk,i+1)
2

(tj−1 − tj−ω)(ti+1 − ti)
− v̄2

k (7)

We use the function direction(pk,i, pk,i+1) to measure the
angle between ok’s moving direction and the x-axis in time

[ti, ti+1]. The mean and deviation of the moving direction
are computed as shown in Eqs. 8 and 9.

θ̄k =

j−2∑
i=j−ω

direction(pk,i, pk,i+1)

(tj−1 − tj−ω)
(8)

σ(θk) =

√√√√
j−2∑

i=j−ω

direction(pk,i, pk,i+1)
2

(tj−1 − tj−ω)(ti+1 − ti)
− θ̄2

k (9)

When intruders pass through the watching area, they are
unlikely to change moving speed and direction dramatically.
We make the assumption that the values of intruder speed
and direction follow a normal distribution, and build a cone
model to predict the area of ok’s appearance in tj .

Example 3. Figure 7 shows the cone model for intruder
ok. Suppose ω is set to 5; the system retrieves ok’s latest
five appearances as Lω

k , and computes ok’s speed and direc-
tion. If those parameters follow a normal distribution, the
probability is 99.7% that ok’ speed and direction of period
[tj−1, tj] are within three standard deviations of the mean
values. The system calculates the four boundary points as
shown in Figure 7. The area of ok’s next possible appearance
is then generated as a partial cone with apex in pk,j−1.

pk,j-1

pk,j-5

pk,j-4 pk,j-2
p3,j

p2,j

p1,j

pk,j-3

(3 (), 3 ())v v

(3 (), 3 ())v v

(3 (), 3 ())v v(3 (), 3 ())v v

Figure 7: Example: The Cone Model

Let pi,j be an intruder appearance in the cone area, and
pk,j−1 be the latest intruder appearance of Lω

k , if intruder
ok moves from pk,j−1 to pi,j , then ok’s speed and direction
in [tj−1, tj] are estimated as Eqs. 10 and 11.

v̂k,j =
dist(pk,j−1, pi,j)

(tj − tj−1)
(10)

θ̂k,j =
direction(pk,j−1, pi,j)

(tj − tj−1)
(11)

By comparing v̂k,j and θ̂k,j , the system can estimate the
matching probability between pi,j and Lk as Eq. 12.

P (pi,j , Lk) =
1√

2πσ(vk)
exp

(
− (v̂k,j − v̄k)2

2σ(vk)2

)
(12)

· 1√
2πσ(θk)

exp

(
− (θ̂k,j − θ̄k)2

2σ(θk)2

)

Example 4. Suppose there are three intruder appearances
detected in tj , as shown in Figure 7. p1,j and p2,j locates in
the cone area and p3,j is outside the area. Their trustworthi-
ness scores are: τ(p1,j) = 0.1, τ(p2,j) = 0.8, τ(p3,j) = 0.9.

Even p3,j has the highest trustworthiness, it is impossible to
be an appearance of Lk. By considering the matching prob-
ability and trustworthiness of remaining two appearances,
the system selects p2,j as the intruder’s appearance in tj .

Note that we make the assumption that the values of in-
truder speed and direction follow a normal distribution in
this study. Based on our experiment results, this assump-
tion works well. The cone model can be adopted to other
distributions/models of the intruder movements.

If the trajectory Lk does not contain enough intruder ap-
pearances (i.e., size(Lk) ≤ ω), the system will construct a
cone model with default speed v0 and σ(v0). The default
parameters can be specified by the user, or calculated as the
mean of all the other intruders’ ω-recent trajectories. In such
a case, the system also releases the constraint on movement
direction (i.e., the intruder may move in any direction). The
matching probability is then written as Eq.13.

P (pi,j , Lk) =
1√

2πσ(vk)
exp

(
− (v̂k,j − v̄k)2

2σ(vk)2

)
(13)

Figure 8 shows the detailed steps of trajectory tracking.
For each candidate trajectory Lk, Algorithm 2 first checks
the trajectory size. If the size is larger than ω, the system
retrieves ω-recent trajectory Lω

k and calculates the intruder’s
speed and direction. If the size of Lk is less than ω, the
system uses the default parameters (Lines 2 – 5). Then
the algorithm constructs the cone model. For each intruder
appearance inside the cone area, the system calculates the
matching probability. The one with the highest probability
is tagged as “matched” and added in Lk (Lines 6 – 15).
Finally the system initializes new candidate trajectories for
the unmatched intruder appearances (Lines 16 – 18).

Algorithm 2. The Trajectory Tracking

Input: The candidate trajectory set , the watching network Gj

in time , the positive number .

Output: The updated trajectory set .

1. for each trajectory

2. if size()

3. retrieve the -recent trajectory ;

4. calculate the moving parameters of ;

5. else = 0, () = ()0;

6. calculate the cone model of ;

7. = 0, , ;

8. for unmatched appearance , inside the cone area

9. calculate , ;

10. if , >

11. = , ;

12. , ,

13. if ,

14. add , to ;

15. tag , as matched;

16. for unmatched intruder appearances ,

17. initialize a trajectory by , ;

18. add to ;

19. return ;

Figure 8: Algorithm: The Trajectory Tracking

In Algorithm 2, the system initializes new trajectories
based on unmatched intruder appearances in every snap-
shot. However, majority of them are “ghost trajectories”.
The ghost trajectories are generated by the untrustworthy

appearances (false positives), such as p2,1, p3,1 in Figure 5.
It is a burden for the system to maintain them in memory.
When the time elapses, real trajectories grow longer with
more subsequent appearances added in, but ghost trajecto-
ries are unlikely to get more appearances. Hence we can
eventually prune them.

Definition 12. (Trajectory Expectation) Let Lk be a
candidate trajectory and tj be the current timestamp, the
trajectory expectation Ej(Lk) denotes the expectation that
Lk is a qualified mining result in time tj . Ej(Lk) is defined
as shown in Eq.14, where t1 is the timestamp of the first
intruder appearance in Lk, and β is a decay constant.

Ej(Lk) =
∑

pk,i∈Lk

τ(pk,i)− β(tj − t1) (14)

In the end of every snapshot, the system checks the ex-
pectation of each candidate trajectory. If the expectation
is less than zero, such a trajectory is unlikely to become
a qualified result and should be removed from main mem-
ory. Meanwhile, if a trajectory’s length is longer than the
threshold δ, the system will report it to the user.

In many CPS applications, the sensors may be damaged
by the environment or run out of battery power as time
elapses; the system should also update the sensor’s reliability
scores.

Let Lk be a candidate trajectory, Lk = {pk,1, pk,2, . . .,
pk,n}. If Lk is removed from the candidate set as a ghost
trajectory, all the intruder appearances of Lk will be tagged
as“ghost appearances”. Let pk,j be such a ghost appearance.
For all the responding sensors si ∈ Sr(pk,j), si has reported
a false positive, and its robustness should be reduced. ϕ(si)
is then updated as shown in Eq.15, where li is the number
of false positives reported by si, and ni is the total number
of detection records generated by si.

ϕ(si) = 1− li
ni

(15)

Meanwhile, if Lk is output as a qualified mining result, all
the intruder appearances of Lk are considered to be true. Let
pk,j be a true appearance, for the non-responding sensor sj ∈
Sn(pk,j), sj has made a false negative error, the sensitivity
of si is then reduced as shown in Eq. 16, where fi is the
number of false negatives by si, mi is the total number of
intruders passed through si’s watching area. Let li be the
number of false positives by si, and ni be the total number
of detection records sent by si, mi = ni − li + fi.

ψ(si) = 1− fi

mi
= 1− fi

ni − li + fi
(16)

5. PERFORMANCE EVALUATION

5.1 Experiment Setup
Datasets: To test the performance of LiSM in big and un-
trustworthy data, we generated four datasets based on the
real military trajectories from the CBMANET project [5],
in which an infantry battalion moves from Fort Dix to Lake-
hurst during a mission lasting 3 hours. The data generator
retrieves 20 to 40 vehicle trajectories from CBMANET and
simulates sensor monitoring fields along their routes with
200 to 10,000 deployed sensors. Each sensor scans the des-
ignated area every 10 seconds. If an intruder passes by,
the sensor generates a detection record. The data genera-
tor randomly selects some sensors as false positive reporters,

which may generate detection records without any local in-
truder. The set of false negative reporters is also generated,
such sensors may not send detection record when an intruder
passes by. The detailed features of those datasets are listed
in Figure 9.
Baselines: The proposed LiSM algorithm (LM) is com-
pared with two baselines: (1) The Karlman Filtering based
method (KF); (2) TruAlarm method with nearest-neighboring
tracking strategy (TA) [14].
Environments: The experiments are conducted on a PC
with Intel 7500 Dual CPU 2.20G Hz and 3.00 GB RAM.
The operating system is Windows 7 Enterprise. All the al-
gorithms are implemented in Java on Eclipse 3.3.1 platform
with JDK 1.5.0. The detailed parameter settings are listed
in Figure 9.

Dataset |O| |S| |Ri| | | fp% fn%

D1 10 225 27 2.9*105 10% 5%

D2 20 2,500 57 6.1*105 20% 10%

D3 30 3,600 121 1.3*106 40% 20%

D4 40 10,000 326 3.5*106 50% 30%

|O|: intruder number, |S|: sensor number;

|Ri|: the average size of detection record set in each snapshot;

| |: the total size of the detection records;

fp%: the false positive rate, fn%: the false negative rate;

the size threshold : 4 16, default 12;

the -recent trajectory : 3 8, default 6;

the decay factor : 0.05 0.2, default 0.05;

Figure 9: Experiment Settings

5.2 Evaluations on Mining Efficiency
In the first experiment, we evaluate the efficiency of dif-

ferent algorithms with default parameters. The system pro-
cesses LM, KF and TA on the four datasets and records
their time costs. Figure 10(a) shows the results on the four
datasets. Note that the y-axis is in logarithmic scale. In
general, all three algorithms are efficient enough to pro-
cess the data. LM achieves the best efficiency in all the
cases, because the algorithm filters out low-expectation tra-
jectory candidates in each snapshot and tracks the trajecto-
ries quickly with the cone model.

Then we study the factors that influence LM’s efficiency.
We set the decay factor β from 0.05 to 0.2 and record the
algorithm’s time cost on datasets D1 to D4 in Figure 10(b).
With larger β, the system prunes more candidate trajecto-
ries and achieves better time efficiency. We also study the
algorithm’s running time with trajectory size threshold δ
and the recent trajectory length ω. Both parameters do not
influence the algorithm’s efficiency, so we omit the results
here.

5.3 Evaluations on Mining Effectiveness
To evaluate the quality of mining results, we retrieve the

intruders’ true trajectories as ground truth and compare
against the mining results. There are two stage of “mining
lines in the sand”: (1) detecting the intruder appearances;
(2) tracking their trajectories. In this experiment, we first
compare the detected intruder appearances with the ground
truth. If their distance is less than a reasonable error bound

1

10

100

1000

10000

100000

D1 D2 D3 D4

LM KL TN

(a)

Time(unit: millisecond)

0

5000

10000

15000

20000

25000

30000

35000

0.05 0.1 0.15 0.2

D1 D2 D3 D4

(b)

Time(unit: millisecond)

D1 D2 D3

LM KF TA

Figure 10: Efficiency: (a) time costs on different
datasets and (b) influence of β.

(20 meters), the detection is considered as a valid result.
Then we check each generated trajectory Lk, if more than
90% of Lk’s intruder appearances can be matched to a real
trajectory in the ground truth, we consider Lk as a valid tra-
jectory. Finally, we compute two measurements to evaluate
the algorithms’ effectiveness.

• Precision: The proportion of valid appearances/trajectories
over the mining results. This represents the algorithm’s
selectivity for filtering out false positives.

• Recall: The proportion of valid appearances/trajectories
over the ground truth. This criterion shows the algo-
rithm’s sensitivity for detecting the intruders.

The detection precision and recall of LM, KF and TA are
shown in Figure 11. All the three methods can achieve a
relative high recall of about 80%. However, the precision of
KF and TA drops rapidly in D3 and D4, which have more
untrustworthy data. The precision of KF is less than 20%
in D4, which is only one fourth of LM’s precision. TA’s
precision is also lower than 50%. In contrast, LM filters out
the false positive data and keeps the precision over 80%.

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

LM KL TN

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

LM KL TN

(a) Detecting Precision (b) Detecting RecallD1 D2 D3

LM KF TA

D1 D2 D3

LM KF TA

Figure 11: Effectiveness: Detecting (a) precision
and (b) recall of intruder appearances on different
datasets.

Then we check the tracking precision and recall of the
three algorithms. The results are shown in Figure 12. TA’s
tracking performance is much worse than its detection effec-
tiveness. The average precision is about 40% and the recall
is less than 20%. This is caused by TA’s tracking strategy:
the nearest-neighboring tracking method always selects the
nearest intruder appearance to add to the candidate trajec-
tory. When there are multiple intruders whose trajectories
intersect, the nearest-neighboring method is very likely to
mix up their trajectories. KF’s precision is also not high.

This is due to the low precision of KF in the detection step.
If the algorithm cannot detect the intruder appearances ef-
fectively in the first stage, the tracking results are inevitably
influenced by the false positives. The precision and recall of
LM are much higher; both of them are around 80%. These
results indicate that LM is more suitable than TA and KF
to process datasets with many untrustworthy reports.

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

LM KL TN

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

LM KL TN

(a) Tracking Precision (b) Tracking RecallD1 D2 D3

LM KF TA

D1 D2 D3

LM KF TA

Figure 12: Effectiveness: Tracking (a) precision
and (b) recall of intruder trajectories on different
datasets.

In the next experiment, we investigate LM’s precision and
recall with different trajectory length threshold δ. The re-
sults are shown in Figures 13 and 14. With larger δ, fewer
trajectories are reported. Hence the algorithm’s precision
increases, but the recall drops. Based on the experiment
results, our suggestion is to select moderate δ (e.g., 8 to 10)
to make LM achieve the best performance.

60%

70%

80%

90%

100%

2 4 6 8

D1 D2 D3 D4

0%

20%

40%

60%

80%

100%

2 4 6 8

D1 D2 D3 D4

(a) Detecting Precision (b) Detecting Recall

4 8 12 16 4 8 12 16

Figure 13: Effectiveness: Detecting (a) precision
and (b) recall w.r.t. δ.

Finally, we study the influences of parameter ω and β.
The results of LM’s effectiveness are recorded in Figures 15
to 18. If the length of ω-recent trajectory is too short, LM
may not be able to track the intruder with an accurate cone
model. The decay factor β is used to filter the candidate tra-
jectories; if it is set too large, the algorithm may prune some
trustworthy candidates. The recall of LM is then reduced.
Therefore, ω should be set as a reasonable large value (e.g.,
6 to 9) and β should be set relatively small (e.g., 0.05).

6. RELATED WORK
The problem of mining trajectories from sensor data has

received increasing attention in recent years, the related
studies can be loosely classified into two categories.

60%

70%

80%

90%

100%

2 4 6 8

D1 D2 D3 D4

0%

20%

40%

60%

80%

100%

2 4 6 8

D1 D2 D3 D4

(a) Tracking Precision (b) Tracking Recall

4 8 12 16 4 8 12 16

Figure 14: Effectiveness: Tracking (a) precision and
(b) recall w.r.t. δ.

60%

70%

80%

90%

100%

3 6 9 12

D1 D2 D3 D4

60%

70%

80%

90%

100%

3 6 9 12

D1 D2 D3 D4

(a) Detecting Precision (b) Detecting Recall

Figure 15: Effectiveness: Detecting (a) precision
and (b) recall w.r.t. ω.

Intruder Detection. Arora et al. propose the intrusion de-
tection problem in wireless networks and design a detection
model with acoustic and magnetic sensors [1]. Ozdemir et
al. use the techniques of particle filtering to detect intruders
[11]. Sheng and Hu propose the maximum likelihood-based
estimation method [12] and Tang et al. propose the Tru-
Alarm filtering method [14].

The main concern of these methods is to detect the intrud-
ers in a single snapshot, i.e., without considering the tem-
poral information of the intruders’ movement. Some studies
focus on saving sensors’ energy and communication band-
width, they try to provide an optimal sensor deployment
plan. LiSM actually complements those technologies and
improves the system’s applicability.

Trajectory Tracking. Lin et al. propose a framework for
the in-network intruder tracking [8]. Zhong et al. provide
the techniques to track intruders with a sequence of alarm-
ing sensors [18]. Oh et al. propose the Markov Chain data
association method for target tracking [10].

In these studies, the researchers assume that the targets’
locations at each snapshot are already known. They focus
on connecting the targets’ locations at different snapshots
to generate trajectories. However, as pointed out in [1],
the intruder tracking results cannot be accurate based on
many false intruder detections. To the best of our knowl-
edge, LiSM is the first study to solve both detecting and
tracking problems in an integrated framework.

7. CONCLUSION AND FUTURE WORK
In this study we investigate the problem of mining tra-

jectories in cyber-physical systems. We propose a novel

60%

70%

80%

90%

100%

3 6 9 12

D1 D2 D3 D4

60%

70%

80%

90%

100%

3 6 9 12

D1 D2 D3 D4

(a) Tracking Precision (b) Tracking Recall

Figure 16: Effectiveness: Tracking (a) precision and
(b) recall w.r.t. ω.

80%

85%

90%

95%

100%

0.05 0.1 0.15 0.2

D1 D2 D3 D4

60%

70%

80%

90%

100%

0.05 0.1 0.15 0.2

D1 D2 D3 D4

(a) Detecting Precision (b) Detecting Recall

Figure 17: Effectiveness: Detecting (a) precision
and (b) recall w.r.t. β.

method, LiSM, to discover intruder trajectories from un-
trustworthy sensor data. The watching network is designed
to detect intruder appearances and the cone model is used
to track their trajectories. We evaluate the proposed al-
gorithms in extensive experiments on big datasets. LiSM
outperforms the state-of-the-art methods on both detection
and tracking tasks with higher precision and recall.

LiSM is proposed in 2D Euclidean environment. We are
going to extend LiSM on more complicated scenarios such as
the 3D environment, road networks and the indoor environ-
ment with obstacles. We are also interested in integrating
more information, including the weather and local traffic, to
improve the system performance.

8. ACKNOWLEDGEMENTS
The work was supported in part by U.S. National Sci-

ence Foundation grants IIS-0905215, CNS-0931975, CCF-
0905014, IIS-1017362, the U.S. Army Research Laboratory
under Cooperative Agreement No.W911NF-09-2-0053 (NS-
CTA) and W911NF-11-2-0086. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Army Research Lab-
oratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notice herein.

9. REFERENCES
[1] A. Arora, P. Dutta, and S. Bapat. A line in the sand: a

wireless sensor network for target detection, classification,
and tracking. Computer Networks, 46(5):605–634, 2004.

40%

50%

60%

70%

80%

90%

100%

0.05 0.1 0.15 0.2

D1 D2 D3 D4

60%

70%

80%

90%

100%

0.05 0.1 0.15 0.2

D1 D2 D3 D4

(a) Tracking Precision (b) Tracking Recall

Figure 18: Effectiveness: Tracking (a) precision and
(b) recall w.r.t. β.

[2] T. N. S. Foundation. Cyber-physical systems. In Program
Announcements and Information, 2008.

[3] M. Hewish. Reformatting fighter tactics. In Jane’s
International Defense Review, 2001.

[4] I. Hwang, H. Balakrishnan, K. Roy, and C. Tomlin.
Multiple-target tracking and identity management in
clutter, with application to aircraft tracking. In Proceedings
of the American Control Conference, 2004.

[5] T. Krout. Cb manet scenario data distribution. In BBN
Tech. Report, 2007.

[6] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin.
Smart community: an internet of things application. IEEE
Communications Magazine, 49(11), 2011.

[7] Z. Li, J. Han, M. Ji, L. A. Tang, Y. Yu, B. Ding, J.-G. Lee,
and R. Kays. Movemine: Mining moving object data for
discovery of animal movement patterns. ACM Transactions
on Intelligent Systems and Technology, 2(4), 2011.

[8] C. Lin, W. Peng, and Y. Tseng. Efficient in-network
moving object tracking in wireless sensor network. IEEE
Transaction on Mobile Computing, 5(8), 2006.

[9] C. Lo and W. Peng. Carweb: A traffic data collection
platform. In International Conference on Mobile Data
Management, 2008.

[10] S. Oh, S. Russell, and S. Sastry. Markov chain monte carlo
data association for multi-target tracking. IEEE Trans.
Automat. Contr., 54(3), 2009.

[11] O. Ozdemir, R. Niu, and P. K. Varshney. Tracking in
wireless sensor network using particle filtering: Physical
layer considerations. In IEEE Trans. on Signal Processing,
2009.

[12] X. Sheng and Y. Hu. Maximum likelihood multiple source
localization using acoustic energy measurements with
wireless sensor networks. In IEEE Trans. on Signal
Processing, 2005.

[13] R. Szewczyk, J. Polastre, and J. Mainwaring. Lessons from
a sensor network expedition. In European Workshop on
Wireless Sensor Networks, 2004.

[14] L. Tang, X. Yu, S. Kim, J. Han, C. Hung, and W. Peng.
Tru-alarm: Trustworthiness analysis of sensor networks in
cyber-physical systems. In ICDM, 2010.

[15] L. A. Tang, Q. Gu, X. Yu, J. Han, T. F. L. Porta,
A. Leung, T. F. Abdelzaher, and L. M. Kaplan. Intrumine:
Mining intruders in untrustworthy data of cyber-physical
systems. In SDM, 2012.

[16] G. Tolle, J. Polastre, and R.Szewczyk. A macroscope in the
redwoods. In The ACM Conference on Embedded
Networked Sensor Systems, 2005.

[17] Y. Zheng and X. Zhou. Computing with Spatial
Trajectories. Springer, 2011.

[18] Z. Zhong, T. Zhu, D. Wang, and T. He. Tracking with
unreliable node sequences. In INFOCOM, 2009.

