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Abstract

Recent works have considered shape recovery for an object
of unknown BRDF using light source or object motions. This
paper proposes a theory that addresses the remaining problem
of determining shape from the (small or differential) motion
of the camera, for unknown isotropic BRDFs. Our theory de-
rives a differential stereo relation that relates camera motion
to depth of a surface with unknown isotropic BRDF, which
generalizes traditional Lambertian assumptions. Under or-
thographic projection, we show shape may not be constrained
by differential stereo for general isotropic BRDFs, but two
motions suffice to yield an invariant for several restricted (still
unknown) BRDFs exhibited by common materials. For the per-
spective case, we show that three differential motions suffice
to yield the surface depth for unknown isotropic BRDF and
unknown directional lighting, while additional constraints
are obtained with restrictions on the BRDF or lighting. The
limits imposed by our theory are intrinsic to the shape re-
covery problem and independent of choice of reconstruction
method. We outline with experiments how potential recon-
struction methods may exploit our theory. We also illustrate
trends shared by theories on shape from differential motion of
light source, object or camera, to relate hardness of surface
reconstruction to complexity of imaging setup.

1. Introduction
Image formation is an outcome of the interaction between

shape, lighting and camera, governed by the reflectance of
the underlying material. Motion of the object, light source or
camera are important cues for recovering object shape from
images. Each of those cues have been extensively studied in
computer vision, under the umbrellas of optical flow for ob-
ject motion [6, 8], photometric stereo for light source motion
[17] and multiview stereo for motion of the camera [14]. Due
to the complex and often unknown nature of the bidirectional
reflectance distribution function (BRDF) that determines ma-
terial behavior, simplifying assumptions like brightness con-
stancy and Lambertian BRDF are often employed. However,
recent works have shown that differential motion of the light
source [1] or the object [3] inform about shape even with
unknown BRDFs. This paper solves the remaining problem
of characterizing shape recovery for unknown BRDFs, using
differential motion of the camera.

Section 3 of this paper proposes a physically valid dif-

ferential stereo relation that relates depth to camera motion,
while accounting for general material behavior in the form of
an isotropic BRDF. Diffuse photoconsistency of traditional
Lambertian stereo follows as a special case. Surprisingly, it
can be shown that considering a sequence of motions allows
eliminating the BRDF dependence of differential stereo.

The mathematical basis for differential stereo is outwardly
similar to differential flow for object motion [3]. However,
while BRDFs are considered black-box functions in [3], our
analysis explicitly considers the angular dependencies of
isotropic BRDFs to derive additional insights. A particu-
lar benefit is to show that ambiguities exist for the case of
camera motion, which render shape recovery more difficult.

Consequently, for orthographic projection, Sec. 4 shows a
negative result whereby constraints on the shape of a surface
with general isotropic BRDF may not be derived using camera
motion as a cue. But we show the existence of an invariant
for several restricted isotropic BRDFs, exhibited by common
materials like plastics, metals, some paints and fabrics. The
invariant is characterized as a quasilinear partial differential
equation (PDE), which specifies the topological class upto
which reconstruction may be performed.

Under perspective projection, Sec. 5 shows that depth for
a surface with unknown isotropic BRDF, under unknown di-
rectional lighting, may be obtained using differential stereo
relations from three or more camera motions. Further, for
the above restricted families of BRDFs, we show that an
additional linear constraint on the surface gradient is avail-
able. These results substantially generalize Lambertian stereo,
since depth information is obtained without assuming diffuse
photoconsistency, while a weak assumption on material type
yields even richer surface information. Table 1 summarizes
the main theoretical results of this paper.

Finally, Sec. 6 discusses relationships between theories on
shape recovery from differential motion of the object, light
source and camera. We explore shared traits among those
theories that allow shape recovery and their common trends
on the hardness of surface reconstruction. Those perspectives
on shape from motion are summarized in Table 2.

2. Related Work

Relating shape to intensity variations due to differential
motion has a significant history in computer vision, dating to
studies in optical flow [6, 8]. The limitations of the Lamber-
tian assumption have been recognized by early works [10, 16].



Camera Light BRDF #Motions Surface Constraint Shape Recovery Theory
Persp. Unknown Lambertian 1 Linear eqn. Depth Stereo
Orth. Unknown General, unknown - Ambiguous for reconstruction Prop. 3
Orth. Unknown View-angle, unknown 2 Homog. quasilinear PDE Level curves Rem. 1, Prop. 6
Orth. Known Half-angle, unknown 2 Inhomog. quasilinear PDE Char. curves Props. 4, 7
Persp. Unknown General, unknown 3 Linear eqn. Depth Prop. 8
Persp. Unknown View-angle, unknown 3 Lin. eqn. + Homog. lin. PDE Depth + Gradient Sec. 5.2
Persp. Known Half-angle, unknown 3 Lin. eqn. + Inhomog. lin. PDE Depth + Gradient Prop. 9

Table 1. Summary of the theoretical results of this paper. Note that k camera motions result in k + 1 images. In general, more constrained
BRDF or lighting yields richer reconstruction invariants.

In the context of stereo, several methods have been de-
veloped for non-Lambertian materials. Zickler et al. use the
Helmholtz reciprocity principle for reconstruction with arbi-
trary BRDFs [18]. An example-based stereo that uses refer-
ence shapes of known geometry and various material types is
presented in [15]. Stereo reconstructions for specular surfaces
have been studied by Savarese et al. in [13]. In contrast, this
paper explores how an image sequence derived from camera
motion informs about shape with unknown isotropic BRDFs,
regardless of reconstruction method.

Light source and object motions have also been used to un-
derstand shape with unknown BRDFs. A photometric stereo
method based on small light source motions is presented by
[4], while optical flow has been generalized to more general
models by [5, 11]. An isometric relationship between changes
in normals and radiance profiles under varying light is used
by Sato et al. to recover shape with unknown reflectance [12].

Closely related to this paper are the works of Chandraker et
al. that derive topological classes up to which reconstruction
can be performed for unknown BRDFs, using differential mo-
tion of the source [1] or object [3]. This paper derives limits
on shape recovery using the third cue, namely camera motion.
The similarities and differences between the frameworks are
explored throughout this paper and summarized in Sec. 6.

3. Differential Stereo for General BRDFs

In this section, we state our assumptions and derive the
relationship between camera motion and surface depth, for un-
known isotropic BRDFs. We also provide some intuition into
that relationship, which will be used for subsequent shape re-
covery results. To facilitate presentation, we will occasionally
point the reader to the appendices for details whose deferral
does not impact understanding the theory.

3.1. Derivation of the Differential Stereo Relation

Assumptions and setup We assume static object and light-
ing, while the camera moves. For rigid body motion, our
analysis equivalently considers a fixed camera, with the ob-
ject and light source undergoing the inverse motion. The
illumination is assumed directional and distant. The object
BRDF is assumed to be homogeneous and isotropic, with
unknown functional form. We make a technical assumption

that the camera direction is constant over the entire object. 1

Global illumination effects are assumed negligible.
Let the focal length of the camera be f . The camera model

is perspective for finite values of f and approaches ortho-
graphic as f → ∞. The principal point on the image plane
is defined as the origin of the 3D coordinate system, with the
camera center at (0, 0,−f)>. Denoting β = f−1, a 3D point
x = (x, y, z)> is imaged at u = (u, v)>, where

u =
x

1 + βz
, v =

y

1 + βz
. (1)

The camera is assumed to be geometrically calibrated.

Motion field Suppose the camera undergoes rotation R̃
and translation τ̃ . For rigid body motion, we equivalently
assume that the object and light source undergo a rotation
R = R̃−1 and translation τ = R̃−1τ̃ , with a fixed camera.
For differential motion, we approximate R ≈ I+[ω]×, where
ω = (ω1, ω2, ω3)>.

The motion field, µ = (u̇, v̇)>, is the differential motion
of the image obtained by differentiating (1). We refer the
reader to prior works like [10, 3] for a derivation and simply
state here the motion field in a form similar to [3]:

Perspective: µ =

(
α1 +

α2 + ω2z

1 + βz
, α3 +

α4 − ω1z

1 + βz

)>
, (2)

Orthographic: µ = (α5 + ω2z, α6 − ω1z)
>
, (3)

where αi, i = 1, · · · , 6 are known functions of ω, τ , u and
β, whose algebraic forms are given by:

α1 = ω2βu
2 − ω1βuv − ω3v, α2 = τ1 − βuτ3, (4)

α3 = −ω1βv
2 + ω2βuv + ω3u, α4 = τ2 − βvτ3, (5)

α5 = τ1 − ω3v, α6 = τ2 + ω3u. (6)

Differential stereo relation Let s be the unit vector denot-
ing light source direction and v = (0, 0,−1)> be the camera
direction. For a 3D point x = (x, y, z(x, y))> on the object
surface, the unit surface normal is given by

1This assumption is exact for orthographic cameras, but only an approx-
imation for perspective projection where viewing direction may vary over
object dimensions. The approximation is reasonable in practical situations
where the camera is not too close to the object, relative to object size.



n = (n1, n2, n3)> =
(zx, zy,−1)>√
z2x + z2y + 1

, (7)

where ∇z = (zx, zy)> is the surface gradient. For a homoge-
neous isotropic BRDF ρ, with distant light source, the image
intensity at pixel u of a 3D point x is assumed to be

I(u, t) = σ(x)ρ(x,n, s,v), (8)

where σ is the albedo and the cosine fall-off is absorbed in ρ.
This is a reasonable imaging model that subsumes traditional
ones like Lambertian and allows general isotropic BRDFs
modulated by spatially varying albedo. We do not make any
assumptions on the functional form of ρ, except smoothness.

Taking the total derivative on both sides of (8), we get

Iuu̇+ Iv v̇ + It = σ
d

dt
ρ(x,n, s,v) + ρ

dσ

dt
. (9)

Since σ is intrinsically defined on the surface coordinates,
its total derivative vanishes. For the rigid body motion we
consider, ṅ = ω × n and ṡ = ω × s, while the camera
direction remains unchanged. Using chain rule differentiation
and noting that µ = (u̇, v̇)> is the motion field, we have

(∇uI)>µ+ It = σ [ (∇xρ)>ν + (∇nρ)>(ω × n)

+ (∇sρ)>(ω × s) ] (10)

where ν = ẋ is the linear velocity. While the above discussion
gives intuition for the differential relation in (10), we refer
the reader to Appendix A for a rigorous derivation.

For distant lighting and homogeneous reflectance in our
setup, we may assume that∇xρ is negligible. Further, divid-
ing the two sides of (10) with those of (8), we get

(∇uE)>µ+ Et = (n×∇n log ρ+ s×∇s log ρ)>ω (11)

where we use the notation E = log I and the identities
(∇aρ)>(ω × a) = (a×∇aρ)>ω and ∇a log ρ = ρ−1∇aρ,
for some a ∈ R3. We call (11) the differential stereo relation.

3.2. Understanding the Differential Stereo Relation

Generalization of Lambertian stereo Initial intuition into
the differential stereo relation of (11) may be derived by not-
ing how it generalizes traditional Lambertian stereo. For two
images I1 and I2 related by a known motion, Lambertian
stereo seeks the depth z that best satisfies brightness con-
stancy: I1(u) = I2(u + µ(z)). Substituting a Lambertian
reflectance ρ(n, s,v) = n>s in (11), we get

(∇uE)>µ+ Et =
(
n× (n>s)−1s + s× (n>s)−1n

)>
ω

= 0>ω = 0, (12)

which is precisely brightness constancy (total derivative of im-
age intensity is zero). Thus, diffuse photoconsistency imposed
by traditional stereo is a special case of our theory.

Relation to object motion For object motion, a differential
flow relation is derived in [3]. The differential stereo relation
of (11) has an additional dependence on BRDF derivatives
with respect to the light source. This stands to reason, since
both the object and lighting move relative to camera in the
case of camera motion, while only the object moves in the
case of object motion. Thus, intuitively, camera motion leads
to a harder reconstruction problem. Indeed, as we will see
next, the dependence of (11) on lighting leads to a somewhat
surprising additional ambiguity.

Ambiguity for camera motion Now we derive some addi-
tional insights by making a crucial departure from the anal-
ysis of [3]. Namely, instead of treating isotropic BRDFs as
entirely black box functions, we explicitly consider their phys-
ical property in the form of angular dependencies between the
normal, light source and camera directions. We define

π = n×∇n log ρ+ s×∇s log ρ, (13)

which allows rewriting the differential stereo relation (11) as:

(∇uE)>µ+ Et = ω>π. (14)

The entity π is central to our theory, since it captures the
dependence of differential stereo on BRDF. Its practical sig-
nificance is that any shape recovery method that seeks invari-
ance to material behavior must either accurately model π, or
eliminate it. Our work adopts the latter approach.

This definition of π leads to an observation intrinsic to
shape recovery with isotropic BRDFs:

Proposition 1. The BRDF dependence of differential stereo is
captured by a 2D vector in the principal plane of the camera.

Proof. Since an isotropic BRDF depends on the three angles
between normal, camera and light directions, we may write

ρ̃(n>s, s>v,n>v) = log ρ(n, s,v). (15)

Denote θ = n>s, φ = s>v and ψ = n>v. Then, applying
chain-rule differentiation, we may write (13) as

π = n×∇nρ̃+ s×∇sρ̃

= ρ̃θ(n× s) + ρ̃ψ(n× v) + ρ̃θ(s× n) + ρ̃φ(s× v)

= ρ̃ψ(n× v) + ρ̃φ(s× v). (16)

From the form of π in (16), it is evident that π>v = 0. For
our choice of coordinate system, v = (0, 0,−1)>. Thus,

π3 = 0. (17)

It follows that the BRDF-dependent entity π = (π1, π2, 0)>

lies on the principal plane of the camera.

This is an important result that limits the extent to which
shape may be recovered from differential stereo. The follow-
ing sections explore the precise nature of those limits.



4. Orthographic Projection
Estimating the motion field,µ, is equivalent to determining

dense correspondence and thereby, object shape. We now con-
sider shape recovery with unknown BRDF under orthographic
projection, using a sequence of differential motions.

4.1. Rank Deficiency and Depth Ambiguities

It is clear that just one differential motion of the camera is
insufficient to extract depth, since (14) is a linear relation in
the multiple unknowns {z,π}. Consequently, we consider a
sequence of differential motions. We start by observing that,
in the case of orthography, a rank deficiency similar to the
case of object motion exists for camera motion too.

Under orthography, the motion field µ is given by (3).
Noting the µ1 and µ2 are linear in z, we observe that the
differential stereo relation of (14) reduces to:

pz + q = ω>π (18)

where, using (3), p and q are known entities given by

p = ω2Eu − ω1Ev (19)
q = α5Eu + α6Ev + Et. (20)

Consider m > 0 differential motions of the camera about
a base position, given by {ωi, τ i}, for i = 1, · · · ,m. Let
E0 = log I0 be the logarithm of the base image, with Ei

being the log-image for each motion {ωi, τ i}. Note that
the spatial gradient of the image is independent of motion
and corresponds to derivative of E0 with respect to u. We
will simply denote it as ∇uE = (Eu, Ev)

>. The temporal
derivative, Et, as well as p and q, depend on the motion.

To recover the unknown depth z, an initial approach may
consider m ≥ 3 relations of the form (14) as a linear system:

Ã

 z
π1
π2

 = q, with Ã =

 −p
1 ω1

1 ω1
2

...
...

−pm ωm1 ωm2

 , (21)

where q = (q1, · · · , qm)>. Note that Proposition 1 allows
us to drop any dependence on ω3, since π3 = 0 is not an
unknown. But observe the form of pi = ωi2Eu − ωi1Ev from
(19), which makes Ã rank-deficient. Thus, we have shown:

Proposition 2. Under orthographic projection, surface depth
under unknown BRDF may not be unambiguously recovered
using solely camera motion as the cue.

While depth cannot be directly recovered from differential
stereo under orthography, a natural next step is to consider
the possibility of any constraints on the depth. However, the
result of Proposition 1 makes this challenging for the case
of camera motion. To see this, we note that the null vector
of the rank-deficient matrix Ã is (1,−Ev, Eu)>. With Ã+

denoting the Moore-Penrose pseudoinverse of Ã, for any
k 6= 0, we have a parameterized solution to (21): z

π1
π2

 = γ + k

 1
−Ev
Eu

 , (22)

where γ = (γ1, γ2, γ3)> = Ã+q. From the first equation in
the above system, we have k = z − γ1. Thereby, we get the
following two relations between z and π:

π1 = (γ2 + Evγ1)− Evz, (23)
π2 = (γ3 − Euγ1) + Euz. (24)

Now, any relationship between π1 and π2 gives a constraint
on the depth, z. But from Prop. 1, π is an arbitrary vector in
the principal plane. That is, from (16), π1 and π2 depend on
two unknown BRDF derivatives ρ̃ψ and ρ̃φ. It follows that
without imposing any external constraint on ρ̃ψ and ρ̃φ, one
may not derive a constraint on surface depth. Thus, we state:

Proposition 3. Under orthographic projection, for unknown
isotropic BRDF, an unambiguous constraint on surface depth
may not be derived using solely camera motion as the cue.

The above is an example of the comparative limits on shape
recovery with object or camera motion. For object motion,
only the relative motion between camera and object must be
accounted. Thus, the definition of π = n ×∇n log ρ in [3]
depends only on the BRDF-derivative with respect to surface
normal. For camera motion, both object and lighting move
relative to the camera. Additional dependence of π in (13) on
BRDF-derivative with respect to lighting makes it indetermi-
nate without further restrictions on BRDF or lighting.

While Prop. 3 is a negative result, its development pro-
vides valuable insight. An m × 3 rank-deficient matrix Ã
constructed using m differential motions, for any m ≥ 2,
determines γ = Ã+q. From (17), (23) and (24), it follows:

Corollary 1. Under orthography, two differential motions of
the camera suffice to constrain π to a linear relation in z.

This fact will now be used, along with some restrictions
on the BRDF, to derive BRDF-invariant constraints on depth.

4.2. BRDF-Invariance for Certain Material Types

The result of Prop. 3 immediately suggests a possibility to
constrain z: consider a BRDF whose dependence on ψ and φ
is restricted in a way that introduces a constraint on π. Note
that the functional form of the BRDF, ρ(·), remains unknown.

4.2.1 BRDFs Dependent on View Angle

Some reflectances depend on the angles subtended by the
normal on the source and view directions. Such BRDFs can
explain the darkening near image edges for materials like



fabrics. Another well-known example is the Minnaert BRDF
for lunar reflectance [9]. In such cases, we may define

ρ̄(n>s,n>v) = log ρ(n, s,v). (25)

Again denoting θ = n>s and ψ = n>v, we get from (13):

π = n×∇nρ̄+ s×∇sρ̄

= n× (ρ̄θs + ρ̄ψv) + s× ρ̄θn = ρ̄ψn× v. (26)

Noting that n × v = (−n2, n1, 0)>, one may eliminate the
BRDF-dependent term ρ̄ψ using (23) and (24) to obtain a
relationship between depths and normals:

π1
π2

=
−n2
n1

=
(γ2 + Evγ1)− Evz
(γ3 − Euγ1) + Euz

. (27)

Using (7) to relate the normal to the gradient, this reduces to

[(γ2 +Evγ1)−Evz]zx+[(γ3−Euγ1)+Euz]zy = 0, (28)

which is a constraint on surface depth and gradient that is
independent of both the BRDF and lighting. We note that
m ≥ 2 differential motions of the camera suffice to determine
γ from (22) and yield the constraint in (28). Thus, we state:

Remark 1. Under orthography, for a BRDF of unknown
functional form that depends on light and view directions, two
differential motions of the camera suffice to yield a constraint
on surface depth independent of BRDF and lighting.

4.2.2 BRDFs Dependent on Half-angle

For many common materials like metals or plastics, it is
reasonable to assume that reflectance depends on the angle
between the surface normal and the half-angle between the
source and view directions. For a surface of such material
type, we can show that a sequence of differential stereo re-
lations yields a BRDF-invariant constraint on surface depth.
For this case, we assume a known light source direction.

Proposition 4. Under orthographic projection, for a BRDF
of unknown functional form that depends on known light and
half-angle directions, two differential motions of the camera
suffice to yield a BRDF-invariant constraint on surface depth.

Proof. For a BRDF that depends on half-angle h, we define

ρ̄(n>s,n>h) = log ρ(n, s,v), where h =
s + v

‖s + v‖
. (29)

The definition of π in (13) may now be rewritten as

π = n×∇nρ̄+ s×∇sρ̄. (30)

We again denote θ = n>s, φ = s>v and define η = n>h.
Then, using the definition of h in (29), we apply chain-rule

differentiation to obtain:

n×∇nρ̄ = ρ̄θ(n× s) + ρ̄η
n× s

‖s + v‖
+ ρ̄η

n× v

‖s + v‖
, (31)

s×∇sρ̄ = ρ̄θ(s× n) + ρ̄η
s× n

‖s + v‖
− ρ̄η

(n>h)s× v

‖s + v‖2
.

(32)

Adding (31) and (32), the first two terms in each cancel out
and we obtain using (30):

π = ρ̄η

[
n× v

‖s + v‖
− (n>h)

s× v

‖s + v‖2

]
. (33)

Intuitively, the symmetry of π with respect to n and s means
it is independent of ρθ. Now, noting that v = (0, 0,−1)> and
‖s + v‖ =

√
2(1 + φ), we obtain from (33):

π1
π2

=
a>n

b>n
=

a1zx + a2zy − a3
b1zx + b2zy − b3

, (34)

where we have used the relationship between surface normal
and gradient given by (7) and denoted

a1 = s2h1, a2 = s2h2 −
√

2(1 + φ), a3 = s2h3, (35)

b1 =
√

2(1 + φ)− s1h1, b2 = −s1h2, b3 = −s1h3.
(36)

From Corollary 1, we also have that m ≥ 2 differential mo-
tions of the camera suffice to restrict π to a linear relation in
z. In particular, from (23) and (24), we have:

π1
π2

=
(γ2 + Evγ1)− Evz
(γ3 − Euγ1) + Euz

, (37)

where γ = (γ1, γ2, γ3)> is defined by (22). Thus, from (34)
and (37), we have obtained

a1zx + a2zy − a3
b1zx + b2zy − b3

=
(γ2 + Evγ1)− Evz
(γ3 − Euγ1) + Euz

, (38)

which may be rewritten as

(λ1 + λ2z)zx + (λ3 + λ4)zy + λ5 = 0, (39)

where

λ1 = a1(γ3 − Euγ1)− b1(γ2 + Evγ1) (40)
λ2 = a1Eu + b1Ev (41)
λ3 = a2(γ3 − Euγ1)− b2(γ2 + Evγ1) (42)
λ4 = a2Eu + b2Ev (43)
λ5 = −a3(γ3 − Euγ1) + b3(γ2 + Evγ1). (44)

We note that the λi above are independent of ρ̄, thus, (39)
is a BRDF-invariant constraint on surface depth.



Intuitively, the ambiguity of Prop. 3 exists since one cannot
constrain π1 and π2 if they depend on two independent un-
knowns ρφ and ρψ. Considering an appropriate BRDF, such
as a half-angle one, allows expressing π in terms of a single
unknown ρη . The linearity of differentiation eliminates ρη to
yield a BRDF-invariant constraint on π. Thus, Prop. 4 can
derive an invariant purely in terms of depth and gradient.

Note that Proposition 1 is a basic property of isotropic
BRDFs under camera motion. So, it may be verified that it
holds true even in the restricted case of half-angle BRDFs,
that is, π>v = −π3 = 0 even for the π defined by (33).

4.2.3 Dependence on Arbitrary Angle in {s,v}-Plane

Recent works on empirical analysis of measured BRDFs show
that reflectance functions often depend on the angles the sur-
face normal makes with the light source and another direction
in the plane defined by the source and camera directions [2].
In such cases, we may write

log ρ(n, s,v) = ρ̄(n>s,n>y), with y =
s + κv

‖s + κv‖
, (45)

for some κ ∈ R. Note that half-angle BRDFs for materi-
als like plastics and metals considered in Section 4.2.2 are a
special case with κ = 1. The BRDFs considered in Section
4.2.1 may also be considered a limit case with κ � 1. Em-
pirical examples for BRDFs with finite κ 6= 1 are shown for
materials like paints and fabrics in [2]. We may now state:

Proposition 5. Under orthographic projection, for a BRDF
of unknown functional form that depends on light source and
an arbitrary direction in the source-view plane, two differen-
tial motions of the camera suffice to yield a BRDF-invariant
constraint on surface depth.

Proof. The proof directly generalizes the development in
Proposition 4. We refer the reader to Appendix B for complete
details. We only note here that we obtain:

π =
κρn>y

1 + κ2 + 2κφ

[
(1 + κ2 + 2κφ)

1
2n− (n>y)s

]
× v,

(46)
thus, dependence on ρmay be eliminated similar to (34) using
π3 = 0 and considering the ratio of π1 and π2. We then invoke
Corollary 1 to constrain π1 and π2 to linear functions in z
using m ≥ 2 differential motions, yielding an invariant:

(λ′1 + λ′2z)zx + (λ′3 + λ′4)zy + λ′5 = 0, (47)

where λ′i, for i = 1, · · · , 5, are again known entities.

We urge the reader to observe that the constraint (47) is
invariant to the functional form of the BRDF, but is not in-
dependent of κ. However, note that κ can be estimated from
image data without requiring a full BRDF estimation, for
instance, using the methods proposed in [2]. Also, we again
note that Proposition 1 is an intrinsic property of isotropic
BRDFs and π3 = 0 continues to hold even for the π in (46).

4.3. Results on Surface Estimation

Recall that Sec. 4.1 establishes that, for general unknown
isotropic BRDFs, one may neither estimate the surface depth,
nor derive any BRDF-invariant constraints on it. However,
Sec. 4.2 derives constraints on depth and gradient for re-
stricted (but unknown) BRDFs. Here, we characterize the
PDE defined by those constraints, which directly informs the
extent to which shape may be recovered.

For a BRDF of the form (25), an invariant of the form (28)
is obtained. We note that (28) is characterized as a homoge-
neous first-order quasilinear PDE [7]. For a surface level
curve z(x, y) = z0, the solution to (28) from PDE theory is:

z = z0,
dy

dx
=

(γ3 − Euγ1) + Euz0
(γ2 + Evγ1)− Evz0

. (48)

That is, given the depth at a point, the ODE (48) defines a step
in the tangent direction, thereby tracing out the level curve
through that point. We refer the reader to Appendix C.1 for a
formal proof, while only stating the result here:

Proposition 6. Under orthography, two or more differential
motions of the camera yield level curves of depth for a surface
with BRDF dependent on light source and view angles.

For half-angle BRDFs given by (29), a BRDF-invariant
constraint on surface depth is obtained as (39). We note that it
is characterized as an inhomogeneous first-order quasilinear
PDE, whose solution is also available from PDE theory [7].
Here, we again state the result while referring the reader to
Appendix C.2 for a proof:

Proposition 7. Under orthography, for a surface with half-
angle BRDF, two or more differential camera motions yield
characteristic surface curves C(x(s), y(s), z(s)) defined by

1

λ1 + λ2z

dx

ds
=

1

λ3 + λ4z

dy

ds
=
−1

λ5

dz

ds
(49)

corresponding to depths at some (possibly isolated) points.

Finally, for a BRDF dependent on an arbitrary angle in the
source-view plane given by (45), the invariant (47) is also an
inhomogeneous quasilinear PDE. So, as a direct generaliza-
tion of Prop. 7, differential stereo also yields characteristic
curves for this case (with λ′i instead of λi).

Shape recovery Given depths at a few points on a surface
with unknown BRDF, the above propositions yield depths
along certain characteristic curves. For a smooth surface,
one may interpolate the depths between the curves, in order
to recover depth for the whole surface. The procedure is
shown for synthetic data in Fig. 1 for a BRDF that depends
on source and view angles (unknown lighting) and in Fig. 2
for unknown half-angle BRDFs (known lighting). Depth is
assumed known at the green points to yield characteristic
curves shown in red. We note that reconstruction methods in
practice may use tracked feature points as seeds.



(a) Input [1 of 3] (b) Level curves (c) Reconstruction

Figure 1. (a) One of three simulated orthographic images (two mo-
tions), with unknown lighting and arbitrary non-Lambertian BRDF
dependent on source and view angles. (b) Level curves estimated
using Prop. 6. (c) Surface reconstructed after interpolation.

(a) Input [1 of 3] (b) Characteristics (c) Reconstruction

Figure 2. (a) One of three synthetic images (two motions), with
unknown half-angle BRDF and known lighting, under orthographic
projection. (b) Characteristic curves estimated using Prop. 7. (c)
Surface reconstructed after interpolation.

5. Perspective Projection

In this section, we consider shape recovery from differ-
ential stereo under perspective projection. In particular, we
show that unlike the orthographic case, depth may be unam-
biguously recovered in the perspective case, even when both
the BRDF and lighting are unknown.

5.1. Depth from Differential Stereo

In the perspective case, the motion field µ is given by (2).
Substituting for µ in the differential stereo relation (11), we
obtain its expression for the perspective case:

p′
(

z

1 + βz

)
+ r′

(
1

1 + βz

)
+ q′ = ω>π, (50)

where π is defined as before by (13) and p′ = Euω2 −Evω1,
q′ = α1Eu +α3Ev +Et and r′ = α2Eu +α4Ev are known
entities. Unlike the orthographic case, the differential stereo
relation is not linear in {z,π} for perspective projection.

We can now show that camera motion unambiguously
determines surface depth under perspective projection:

Proposition 8. Under perspective projection, three differen-
tial motions of the camera suffice to yield depth of a surface
with unknown isotropic BRDF and unknown light source.

Proof. For m ≥ 3, let images E1, · · · , Em be related to a
base imageE0 by known differential motions {ωi, τ i}. Then,
we obtain from (50) a sequence of differential stereo relations:

(p′
i
+ βq′

i
)z − ((1 + βz)π)>ωi + (q′

i
+ r′

i
) = 0, (51)

for i = 1, · · · ,m. Let C̃ =
[
c1, · · · , cm

]>
be the m × 3

matrix with rows ci = [−(p′
i
+ βq′

i
), ωi1, ω

i
2]>. Further, let

q′ = [q′1, · · · , q′m]> and r′ = [r′1, · · · , r′m]>. Then, the
system of differential stereo relations (51) may be written as

C̃

 z
(1 + βz)π1
(1 + βz)π2

 = q′ + r′, (52)

since π3 = 0, from Prop. 1. With C̃+ as the Moore-Penrose
pseudoinverse of C̃, let ε = (ε1, ε2, ε3)> = C̃+(q′ + r′).
Then, (52) has the solution:

[z, (1 + βz)π1, (1 + βz)π2]> = ε (53)

It follows that z = ε1 yields the surface depth.

Thus, Prop. 8 yields surface depth from differential stereo
when both the BRDF and lighting are unknown. Again, a
comparison is merited to the case of object motion in [3].
With object motion, depth and an additional constraint on
the gradient are recovered with unknown BRDF and lighting.
While camera motion also recovers depth, following Prop. 1, it
is likely that further information on the gradient is recoverable
only with additional constraints on the BRDF or lighting.

5.2. Additional Constraints for Certain Materials

As indicated above, now we show that additional con-
straints on the gradient are available for several material types.

Proposition 9. Under perspective projection, three or more
differential motions of the camera suffice to yield both depth
and a linear constraint on the gradient for a surface with
BRDF dependent on known light and half-angle directions.

Proof. Prop. 8 already shows depth recovery from m ≥ 3
differential motions of the camera. Further, from the form of
π for half-angle BRDFs in (33) and using (53), we have

π1
π2

=
a>n

b>n
=
ε2
ε3
, (54)

where a and b are known entities dependent on light, defined
by (34). Finally, using (7) yields a linear PDE in depth:

l1zx + l2zy + l3 = 0, (55)

with l1 = ε2b1 − ε3a1, l2 = ε2b2 − ε3a2, l3 = ε3a3 − ε2b3.
Thus, we obtain a linear constraint on the gradient.



(a) Image (b) π1 (c) π2 (d) Depth

Figure 3. (a) One of four synthetic images (three motions), with arbi-
trary non-Lambertian BRDF and unknown lighting, under perspec-
tive projection. (b,c) π1 and π2 recovered using (57), as discussed
in Sec. 6. (d) Depth estimated using Prop. 8.

(a) Image [1 of 5] (b) Depth map (c) Recovered surface

Figure 4. Reconstruction for a non-Lambertian ball with an unknown
BRDF, under unknown light source, using Proposition 8.

It is evident from the above result that materials for which
a relation between π1 and π2 may be derived independent
of derivatives of the BRDF ρ, yield an additional constraint
on the surface gradient. The form of this constraint will
mirror the relationship between π1 and π2, since their ratio is
a measurable quantity from (54). In particular, it follows that
a linear constraint may also be derived for the more general
case considered in Section 4.2.3:

Remark 2. Under perspective projection, three differential
motions of the camera suffice to yield both depth and a linear
constraint on the gradient for a BRDF dependent on known
light and an arbitrary direction in the source-view plane.

5.3. Shape Recovery

From Prop. 8, depth is directly available in the perspective
case for unknown lighting and unknown BRDF. Fig. 3 illus-
trates this for synthetic data, where the object is imaged under
an unknown light source. The object has diameter 20cm and
is placed 1.5m away from the camera of focal length 10cm.
Three random motions, of approximately 2◦ rotation and 5mm
translation are imparted to the camera. The recovered shape
using the theory of Sec. 5.1 is shown in Fig. 3. No prior
knowledge of the BRDF, lighting or depth are required.

For evaluation with real data, images of the plastic sphere
in Fig. 4(a) are obtained against a textured background under
unknown directional lighting. Note the clear non-Lambertian
effects. The camera focal length is 55mm and the object is
approximately 80cm away. Five small motions (and several
large ones for stable pose optimization) are imparted to the
camera and estimated using bundle adjustment. The surface
depth obtained from Prop. 8 is shown in Fig. 4(b) and (c).

While we do not explore the direction in this paper, note
that with known lighting, one may use the constraint (55) to

solve a joint depth and gradient optimization:

min
z

(z − ε1)2 + λ(l1zx + l2zy + l3)2, (56)

where λ is a relative weight. With standard differencing, the
above is a highly sparse linear system in z which may be
solved efficiently.

6. Perspectives on Shape from Motion Theories
We now provide a unified perspective on shape from mo-

tion theories corresponding to light, object or camera motions.
Despite the apparent complexity of material behavior, differ-
ential motion of light, object or camera allows shape recovery
with unknown BRDF and often unknown lighting. More im-
portantly, theoretical limits on shape from motion are also
derivable in these frameworks. Prior works have presented
theories for light [1] and object [3] motions. This paper has
studied camera motion to complete the differential analysis
framework for shape recovery with unknown BRDFs.

In Table 2, we summarize a few results from each the-
ory. In each case, the theories generalize well-known special
cases that assume Lambertian BRDF or brightness constancy.
Specifically, the theory for light source motion generalizes
photometric stereo, while those for object and camera motion
generalize optical flow and multiview stereo, respectively. A
few important traits are shared by these theories:

• They all rely on the linearity of chain rule differentiation
to eliminate the BRDF from a system of equations.

• The invariant in each case can be characterized as a PDE
amenable to solution through standard analysis tools.

• The involved PDEs provide intrinsic limits on the topo-
logical class upto which shape may be recovered from
each motion cue, regardless of reconstruction method.

• More general imaging necessitates greater number of mo-
tions for shape recovery. For instance, general lighting
requires more motions than a colocated one, or perspec-
tive projection requires more motions than orthographic.

• Constraining the BRDF either reduces the minimum re-
quirement on number of motions (compare colocated
and general BRDFs for object motion), or provides
richer shape information (compare half-angle and gen-
eral BRDFs for camera motion).

The cases of object and camera motion are more closely
related, but with important differences due to additional ambi-
guities entailed by camera motion. Qualitatively, this leads to
a harder problem for the case of camera motion. The practical
manifestation of this hardness is requiring a more restricted
BRDF (although still unknown) to obtain the same shape in-
formation. For instance, a half-angle BRDF yields depth and
a gradient constraint with camera motion, while the same can



Motion Camera Light BRDF #Motions Surface Constraint Shape Recovery Theory
Light Orth. Known Lambertian 2 Lin. eqns. on ∇z (Photo. stereo) Gradient [17]
Light Orth. Unknown General, unknown 2 Linear PDE Level cur. + ‖∇z‖ isocontours [1]
Object Orth. Colocated Uni-angle, unknown 2 Homog. quasilin. PDE Level curves [3]
Object Orth. Unknown Full, unknown 3 Inhomog. quasilin. PDE Char. curves [3]
Object Persp. Brightness constancy 1 Lin. eqn. (optical flow) Depth [6, 8]
Object Persp. Colocated Uni-angle, unknown 3 Lin. eqn. + Homog. lin. PDE Depth + Gradient [3]
Object Persp. Unknown Full, unknown 4 Lin. eqn. + Inhomog. lin. PDE Depth + Gradient [3]
Camera Orth. Unknown General, unknown - Ambiguous for reconstruction Prop. 3
Camera Orth. Unknown View angle, unknown 2 Homog. quasilin. PDE Level curves Prop. 6
Camera Orth. Known Half angle, unknown 2 Inhomog. quasilin. PDE Char. curves Prop. 4, 7
Camera Orth. Known {s,v} plane, unknown 2 Inhomog. quasilin. PDE Char. curves Prop. 5, 7
Camera Persp. Brightness constancy 1 Lin. eqn. (stereo) Depth [14]
Camera Persp. Unknown General, unknown 3 Linear eqn. Depth Prop. 8
Camera Persp. Known Half angle, unknown 3 Lin. eqn. + Inhomog. lin. PDE Depth + Gradient Prop. 9
Camera Persp. Known {s,v} plane, unknown 3 Lin. eqn. + Inhomog. lin. PDE Depth + Gradient Rem. 2

Table 2. A unified look at frameworks on general BRDF shape recovery from differential motions of light source, object or camera. In each
case, PDE invariants are derived which specify precise topological limits on shape recovery. More general BRDFs or imaging setups require
greater number of motions to derive the reconstruction invariant. For comparison, the traditional diffuse equivalents are also shown.

be obtained with general BRDFs for object motion. Allowing
a general BRDF means only depth may be obtained for cam-
era motion, while object motion yields an additional gradient
constraint. Throughout this paper, we have highlighted such
distinctions and their impact on shape recovery.

Future work Our theory focuses on shape recovery, but
some BRDF information may also be recovered as a by-
product. For instance, with perspective projection, Props. 8
and 1 completely define π. That is, from (53),

π =
1

1 + βε1
(ε2, ε3, 0)>. (57)

Fig. 3 shows an example recovery of π. In turn, this places
constraints on the derivative of BRDF. An avenue for future
work is to characterize the extents to which BRDF may be
recovered using motions of the light source, object or camera.

Further, while [1, 3] and this paper together provide limits
on shape recovery from motions corresponding to each imag-
ing element, an interesting problem is to achieve similar limits
when lighting, object and camera all undergo simultaneous
motion. Such a framework is the subject of our ongoing work.

A. Derivation of the Differential Stereo Relation
Section 3 provides an intuitive development of the differ-

ential stereo relation of (11). Here, we provide a rigorous
derivation from first principles.

We wish to relate change in image intensities to rigid-body
motion of the camera, given by rotation R̃ and translation τ̃ ,
while the scene (object and light source) remain static. Recall
that for the purposes of analysis, this is equivalent to assuming
that the camera is fixed, while the object and source undergo
the inverse motion given by roation R = R̃−1 and translation
τ = R̃−1τ̃ . For differential motion, we may approximate
R ≈ I + [ω]×, where ω = (ω1, ω2, ω3)>.

Differential Entities We define the position vector xt(a, b)
which encodes the 3D coordinates of the point (a, b)> on
the surface at time t. Similarly, nt(a, b) is the corresponding
unit surface normal. We will follow optical flow studies like
[10, 16] to distinguish between intrinsic coordinates (a, b) for
entities on the surface (such as albedo), as opposed to 3D
coordinates (for entities like the camera).

Consider a point u = (x, y)> on the image. At time t, it is
the image of the point p = xt(a, b). At time t+ δt, it is the
image of a different point q = xt+δt(a − δa, b − δb). The
displacement of the point (a− δa, b− δb)> between times t
and t+ δt is given by

xt+δt(a− δa, b− δb) = xt(a− δa, b− δb) + δx. (58)

We have suppressed the (a − δa, b − δb) argument of δx.
Denoting νt(a, b) as the linear velocity of (a, b)> at time t,
we have

δx = νt(a− δa, b− δb)δt. (59)

Similarly, the unit surface normals corresponding to the image
point u = (x, y)> at times t and t+ δt are related by

nt+δt(a− δa, b− δb) = nt(a− δa, b− δb) + δn. (60)

For the translational component of the rigid body motion,
δn = 0. For the rotational component, the change in surface
normal is determined by the angular velocity. Thus,

δn = ω × nt(a− δa, b− δb)δt. (61)

In general, the light source must be considered in the 3D
world coordinate system. However, in our particular setup
of camera motion with a fixed object and directional distant
lighting, the relative position of the lighting does not change
with respect to the surface. Thus, the lighting may also be
considered in intrinsic surface coordinates. Consequently,



the light source directions corresponding to the image point
u = (x, y)> at times t and t+ δt are related by

δs = ω × st(a− δa, b− δb)δt. (62)

Thus, we have defined the following differential relations:

xt+δt(a− δa, b− δb) = xt(a− δa, b− δb) + νtδt, (63)
nt+δt(a− δa, b− δb) = nt(a− δa, b− δb) + ω × ntδt,

(64)

st+δt(a− δa, b− δb) = st(a− δa, b− δb) + ω × stδt.
(65)

Differential Stereo The BRDF ρ at a point is a function of
its position, normal, light source and camera directions. Let
the albedo, which is an intrinsic surface property, be σ(a, b).
Then, at time t, suppose a 3D point p = xt(a, b) is imaged at
pixel u. The image formation may be written as:

I(u, t) = σ(a, b) ρ(xt(a, b),nt(a, b), st(a, b),v). (66)

At time t+ δt, the image at the same pixel u will correspond
to a different 3D point q = xt+δt(a − δa, b − δb), since
the object has moved relative to the camera. Thus, image
formation is given by:

I(u, t+ δt) = σ(a− δa, b− δb)ρ (xt+δt,nt+δt, st+δt,v) ,
(67)

where all entities in ρ are evaluated at (a− δa, b− δb). The
image of this 3D point q at time t must have been formed at a
different 2D location on the image plane, u− δu. Thus, the
image formation for 3D point q at time t is given by:

I(u− δu, t) = σ(a− δa, b− δb)ρ (xt,nt, st,v) . (68)

with all entities in ρ again evaluated at (a− δa, b− δb). Sub-
tracting (68) from (67), we have

I(u, t+ δt)− I(u− δu, t) = σ [ ρ (xt+δt,nt+δt, st+δt,v)

− ρ (xt,nt, st,v) ] (69)

Applying chain-rule differentiation and using the differential
entities defined in (63), (64) and (65), the above may be
rewritten as:

I(u,t+ δt)− I(u− δu, t) = σ [ (∇xρ)>νtδt

+ (∇nρ)>(ω × nt)δt+ (∇sρ)>(ω × st)δt ] , (70)

where complete arguments for above variables are νt(a −
δa, b − δb), nt(a − δa, b − δb) and st(a − δa, b − δb). The
BRDF-derivatives ∇xρ, ∇nρ and ∇sρ are also evaluated at
(a− δa, b− δb), at time t. We now note definitions for spatial
and temporal partial derivatives of I(u, t):

(∇uI)>δu = I(u, t)− I(u− δu, t) (71)
∂I

∂t
δt = I(u, t+ δt)− I(u, t). (72)

Substituting both the above definitions into (70), we obtain

∂I

∂t
δt = I(u, t+ δt)− I(u, t) (73)

= I(u− δu, t) + σ [ (∇xρ)>νtδt+ (∇nρ)>(ω × nt)δt

+ (∇sρ)>(ω × st)δt ]− I(u, t) (74)

= −(∇uI)>δu + σ [ (∇xρ)>νtδt+ (∇nρ)>(ω × nt)δt

+ (∇sρ)>(ω × st)δt ] . (75)

Recall the definition of motion field, µ, as the velocity of the
image pixel u:

µ =
δu

δt
. (76)

Then, using (76), the relation in (75) can be written as

(∇uI)>µ+
∂I

∂t
= σ [ (∇xρ)>ν + (∇nρ)>(ω × n)

+ (∇sρ)>(ω × s) ] . (77)

Thus, we have derived (10) from first principles. Following
the subsequent steps as described in Section 3.1 leads to the
differential stereo relation in (11).

B. Proof of Proposition 5
Proposition 5 generalizes Proposition 4 to an arbitrary an-

gle in the {s,v}-plane. Its proof follows the same constructs
and the algebraic details are listed below.

For a BRDF that depends on an arbitrary angle in the
{s,v}-plane, we may define

log ρ(n, s,v) = ρ̄(n>s,n>y), with y =
s + κv

‖s + κv‖
, (78)

where κ ∈ R. Recall the definition of π in (13), which may
be rewritten as:

π = n×∇nρ̄+ s×∇sρ̄. (79)

We denote θ = n>s, φ = s>v, ψ = n>v and η = n>y.
Using the definition of y in (78) and applying chain-rule
differentiation, we obtain:

n×∇nρ̄ = ρ̄θ(n× s) + ρ̄η
n× s

‖s + κv‖
+ κρ̄η

n× v

‖s + κv‖
,

(80)

s×∇sρ̄ = ρ̄θ(s× n) + ρ̄η
s× n

‖s + κv‖
− κρ̄η

(n>(s + κv))s× v

‖s + κv‖3
.

(81)

Adding (80) and (81) and substituting in (79), we obtain:

π =
κρη

(1 + κ2 + 2κφ)
3
2

[
(1 + κ2 + 2κφ)n− (n>s + κn>v)s

]
×v.

(82)



Then, we may eliminate dependence on the BRDF by consid-
ering the ratio:

π1
π2

=
a′>n

b′>n
=

a′1zx + a′2zy − a′3
b′1zx + b′2zy − b′3

, (83)

where we have used the relationship between surface normal
and gradient given by (7) and denoted

a′1 = s1s2, b′1 = (1 + κ2 + 2κφ)− s21,
(84)

a′2 = s22 − (1 + κ2 + 2κφ), b′2 = −s1s2, (85)
a′3 = s2(s3 − κ), b′3 = −s1(s3 − κ). (86)

Now we invoke Corollary 1, which stipulates that m ≥ 2
differential motions of the camera suffice to restrict π to a
linear relation in z. In particular, from (23) and (24), we have:

π1
π2

=
(γ2 + Evγ1)− Evz
(γ3 − Euγ1) + Euz

, (87)

where γ = (γ1, γ2, γ3)> is defined by (22). Thus, from (34)
and (37), we have obtained

a′1zx + a′2zy − a′3
b′1zx + b′2zy − b′3

=
(γ2 + Evγ1)− Evz
(γ3 − Euγ1) + Euz

, (88)

which may be rewritten as

(λ′1 + λ′2z)zx + (λ′3 + λ′4)zy + λ′5 = 0, (89)

where

λ′1 = a′1(γ3 − Euγ1)− b′1(γ2 + Evγ1) (90)
λ′2 = a′1Eu + b′1Ev (91)
λ′3 = a′2(γ3 − Euγ1)− b′2(γ2 + Evγ1) (92)
λ′4 = a′2Eu + b′2Ev (93)
λ′5 = −a′3(γ3 − Euγ1) + b′3(γ2 + Evγ1). (94)

We have now obtained the constraint (47) that relates the
surface depth z to image derivatives and is independent of the
BRDF.

C. Surface Estimation Under Orthography
We now prove the shape recovery results under ortho-

graphic projection stated as Propositions 6 and 7.

C.1. Proof of Proposition 6

Proposition 6 shows that for a surface with unknown BRDF
dependent on light and view angles, observed under unknown
light source with orthographic projection, two differential mo-
tions of the camera suffice to recover level curves of surface
depth corresponding to depths at some (possibly isolated)
points.

For a BRDF that depends on source and view angles, Re-
mark 1 stipulates a BRDF-invariant constraint that relates
surface shape to image derivatives. In particular, we have
from (28):

zx
zy

= − (γ3 − Euγ1) + Euz

(γ2 + Evγ1)− Evz
. (95)

Note that (95) represents a first-order, homogeneous, quasi-
linear PDE. This immediately suggests a method of character-
istics to solve it, using standard constructs from PDE theory.
Specifically, we define

a = ((γ2 + Evγ1)− Evz, (γ3 − Euγ1) + Euz)
>. (96)

Then, from (95), we have that

a>∇z = 0. (97)

From differential geometry, we know that the gradient∇z is
orthogonal to the level curves of surface z. Thus, the tangent
space to the level curves of z is defined by a. Consider
a rectifiable curve, C(x(s), y(s)), parameterized by the arc
length parameter s. The derivative of z along C is given by

dz

ds
=
∂z

∂x

dx

ds
+
∂z

∂y

dy

ds
. (98)

If C is a level curve of z(x, y), then the value of z is constant,

thus,
dz

ds
= 0 on C. Define b =

(
dx

ds
,
dy

ds

)
. Then, we also

have
b>∇z = 0. (99)

From (97) and (99), it follows that a and b are parallel. Thus,
b2
b1

=
a2
a1

, whereby we get from (95):

dy

dx
=

(γ3 − Euγ1) + Euz

(γ2 + Evγ1)− Evz
. (100)

Along a level curve z(x, y) = z0, the solution is given by

z = z0 (101)

dy

dx
=

(γ3 − Euγ1) + Euz0
(γ2 + Evγ1)− Evz0

. (102)

Now, given the value of z at any point on the surface, we
can use the ODE in (102) to determine all other points on the
surface with the same value of z. Thus, (95) allows recon-
struction of level curves of the surface, with unknown BRDF
and unknown light source.

C.2. Proof of Proposition 7

Proposition 7 states that for a BRDF of unknown functional
form that depend on the half-angle, two or more differential
camera motions yield characteristic surface curves given by
(49).



Consider the PDE in (39), given by

(λ1 + λ2u)ux + (λ3 + λ4u)uy + λ5 = 0, (103)

where λi, for i = 1, · · · , 5, are known functions of (x, y)
given by (40)-(44). We note that (103) is a first-order, in-
homogeneous, quasilinear PDE, which may again be solved
using standard constructs from PDE theory.

We established in Section 4.2.2 that our surface of interest
is the integral surface of PDE (103), denoted as S : z =
u(x, y). It is also shown in Section 4.2.2 that the coefficient
functions λi, for i = 1, · · · , 5, can be obtained from two or
more differential motions of the camera. We now rewrite
(103) in the form

a>
[
∇u
−1

]
= 0 (104)

where a = (λ1 +λ2u, λ3 +λ4u, −λ5)>. Then, we note that
the integral surface S : z = u(x, y) is tangent everywhere to
the vector field a. Consider the curve C of (49), represented
with a parameter s ∈ I ⊂ R:

C : x = x(s), y = y(s), z = z(s), (105)

where
dx

ds
= λ1 + λ2z = a1(x, y, z) (106)

dy

ds
= λ3 + λ4z = a2(x, y, z) (107)

dz

ds
= −λ5 = a3(x, y, z) , (108)

where a = (a1, a2, a3)>. We note that the curves C, if they
exist, have a as tangent directions. Next, we derive the re-
lationship between C and S, in particular, we show that if a
point p = (x0, y0, z0)> ∈ C lies on the integral surface S,
then C ⊂ S.

Suppose there exists a point p = (x0, y0, z0)> ∈ C, such
that p ∈ S, that is,

x0 = x(s0), y0 = y(s0), z0 = z(s0) = u(x0, y0). (109)

for some parameter value s = s0 ∈ I. Next, we define

w = w(s) = z(s)− u(x(s), y(s)). (110)

Then, it is clear that w(s) is the solution to the initial value
problem
dw

ds
= uxa1(x, y, w + u) + uya2(x, y, w + u) + a3(x, y, w + u)

(111)

w(s0) = 0. (112)

Further, we note that w = 0 is a particular solution of the
above ordinary differential equation, since z = u(x, y) is a
solution to (103). Also, the solution to (111) must be unique.
Thus, we have z(s) = u(x(s), y(s)), which establishes that
C ⊂ S . This completes the proof that the characteristic curves
C, given by (49), reside on the surface S .

D. Derivation for Exact Relation with∇xρ

The approximate differential stereo relation in (11) assumes that
∇xρ is negligible. While the assumption is reasonable for our setup
and allows us to illustrate the developments, we note that it is not a
necessary requirement. We now show that depth information may
be recovered using motion cues for a surface with unknown BRDF,
even if∇xρ is not assumed to be negligible.

We follow similar steps as illustrated previously. We start with
the exact form of the differential stereo relation. Then we use a
sequence of motions to derive constraints on surface depth. Next,
we show that shape information can be recovered using motion cues.

Differential Stereo Relation

We start with the relation in (10), with no approximations:

(∇uE)>µ+ Et = π
>ω + (∇xρ)

>ν, (113)

where ν = ẋ = ω × x+ τ is the linear velocity and π is defined
by (13). Then, we rewrite the above as

(∇uE)>µ+ Et = π
′>ω + (∇xρ)

>τ . (114)

where we have defined

π′ = π + x×∇xρ. (115)

Constraints from an Image Sequence

We now substitute for the motion field in (114) using (2), to obtain
the counterpart of (50) without considering∇xρ as negligible:

p′
(

z

1 + βz

)
+ r′

(
1

1 + βz

)
+ q′ = ω>π′+ τ>∇xρ, (116)

where p′, q′ and r′ are defined by (??), (??) and (??). Given obser-
vations from m ≥ 6 motions, we arrange relations of the form (116)
into a linear system:


p′1 r′1 −ω1> −τ 1>

...
...

p′m r′m −ωm>−τm>




z

1 + βz
1

1 + βz
π′

∇xρ

=−
 q′

1

...
q′

m

 .
(117)

We denote the above m × 8 matrix B and define q =
(q′

1
, · · · , q′m)>. As before, we assume that all motions are gen-

eral, with rotations and translations that span R3, with the com-
bined (ωi>, τ i>)>, for i = 1, · · · ,m, spanning R6. Then, it can
be observed from the forms of p′ and r′ that rank(B) = 6. Let
γ = −B+q, where B+ is the Moore-Penrose pseudoinverse of
B. Then, for arbitrary λ1, λ2 ∈ R, the linear system in (117) has
solutions of the form:

z

1 + βz
1

1 + βz
π′

∇xρ

 = γ + λ1


1
0
g1

03×1

+ λ2


0
1

03×1

g2

 , (118)

where g1 and g2 are known entities given by

g1=

 g11g12
g13

=
−Ev

Eu

0

 , g2=

 g21g22
g23

=
 Eu

Ev

−β(uEu + vEv)

 .
(119)



Shape Recovery

Now, we can derive several relations from the above solution. First,
we observe from the solution in (118) that

λ1 =
z

1 + βz
− γ1, λ2 =

1

1 + βz
− γ2. (120)

Next, substituting from (120) into the solution in (118), we obtain

π′ = γ′ +

(
z

1 + βz
− γ1

)
g1, ∇xρ = γ̃′ +

(
1

1 + βz
− γ2

)
g2

(121)
where, we have defined γ′ = (γ3, γ4, γ5)

> and γ̃′ = (γ6, γ7, γ8)
>.

From the projection equations in (1), we have

x = (x, y, z)> = (u(1 + βz), v(1 + βz), z)> . (122)

Then, using the definition of π′ along with (121) and (122), we
obtain

π = π′ − (x×∇xρ) = (c1z + c2, c3z + c4, c5z + c6)
>, (123)

where

c1 = −(β2v(uEu + vEv) + Ev)γ2 + γ7 − βvγ8, (124)

c2 = β(1− γ2)v(uEu + vEv) + (Evγ1 + γ3 − vγ8), (125)

c3 = (β2u(uEu + vEv) + Eu)γ2 − γ6 + βuγ8, (126)

c4 = −β(1− γ2)u(uEu + vEv)− (Euγ1 − γ4 − uγ8), (127)

c5 = β(γ2(uEv − vEu) + (vγ6 − uγ7)), (128)

c6 = −(1− γ2)(uEv − vEu) + (γ5 + vγ6 − uγ7). (129)

Similar to the derivations in Section 4.2, for restricted BRDF types
such as those dependent on the half-angle, we may now write

π1

π2
=

e>1 n

e>2 n
=
c1z + c2
c3z + c4

, (130)

where it may be observed from, for instance (33), that e1 and e2

depend only on known entities s and v. Thus, the relation (130) is a
first-order quasilinear PDE, which yields characteristics curves of
surface depth.

Further, with the assumption of Proposition 1, one may obtain
the surface depth using π3 = 0 in (123), as

z =
−c6
c5

=
1

β

[
γ5 − uEv + vEu

u(γ7 − γ2Ev)− v(γ6 − γ2Eu)
− 1

]
. (131)

Thus, six or more differential motions of the observer yield informa-
tion on surface shape with unknown BRDF.
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