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Abstract

Deep metric learning has gained much popularity in recent years, following the
success of deep learning. However, existing frameworks of deep metric learning
based on contrastive loss and triplet loss often suffer from slow convergence, par-
tially because they employ only one negative example while not interacting with
the other negative classes in each update. In this paper, we propose to address
this problem with a new metric learning objective called multi-class N -pair loss.
The proposed objective function firstly generalizes triplet loss by allowing joint
comparison among more than one negative examples – more specifically, N -1
negative examples – and secondly reduces the computational burden of evaluating
deep embedding vectors via an efficient batch construction strategy using only N
pairs of examples, instead of (N+1)×N . We demonstrate the superiority of our
proposed loss to the triplet loss as well as other competing loss functions for a
variety of tasks on several visual recognition benchmark, including fine-grained
object recognition and verification, image clustering and retrieval, and face verifi-
cation and identification.

1 Introduction
Distance metric learning aims to learn an embedding representation of the data that preserves
the distance between similar data points close and dissimilar data points far on the embedding
space [15, 30]. With success of deep learning [13, 20, 23, 5], deep metric learning has received
a lot of attention. Compared to standard distance metric learning, it learns a nonlinear embedding
of the data using deep neural networks, and it has shown a significant benefit by learning deep
representation using contrastive loss [3, 7] or triplet loss [27, 2] for applications such as face recog-
nition [24, 22, 19] and image retrieval [26]. Although yielding promising progress, such frame-
works often suffer from slow convergence and poor local optima, partially due to that the loss func-
tion employs only one negative example while not interacting with the other negative classes per
each update. Hard negative data mining could alleviate the problem, but it is expensive to evaluate
embedding vectors in deep learning framework during hard negative example search. As to ex-
perimental results, only a few has reported strong empirical performance using these loss functions
alone [19, 26], but many have combined with softmax loss to train deep networks [22, 31, 18, 14, 32].

To address this problem, we propose an (N+1)-tuplet loss that optimizes to identify a positive ex-
ample from N -1 negative examples. Our proposed loss extends triplet loss by allowing joint com-
parison among more than one negative examples; when N=2, it is equivalent to triplet loss. One
immediate concern with (N+1)-tuplet loss is that it quickly becomes intractable when scaling up
since the number of examples to evaluate in each batch grows in quadratic to the number of tuplets
and their length N . To overcome this, we propose an efficient batch construction method that only
requires 2N examples instead of (N+1)N to build N tuplets of length N+1. We unify the (N+1)-
tuplet loss with our proposed batch construction method to form a novel, scalable and effective deep
metric learning objective, called multi-class N -pair loss (N -pair-mc loss). Since the N -pair-mc
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Figure 1: Deep metric learning with (left) triplet loss and (right) (N+1)-tuplet loss. Embedding
vectors f of deep networks are trained to satisfy the constraints of each loss. Triplet loss pulls
positive example while pushing one negative example at a time. On the other hand, (N+1)-tuplet
loss pushes N -1 negative examples all at once, based on their similarity to the input example.

loss already considers comparison to N -1 negative examples in its training objectives, negative data
mining won’t be necessary in learning from small or medium-scale datasets in terms of the number
of output classes. For datasets with large number of output classes, we propose a hard negative
“class” mining scheme which greedily adds examples to form a batch from a class that violates the
constraint with the previously selected classes in the batch.

In experiment, we demonstrate the superiority of our proposed N -pair-mc loss to the triplet loss as
well as other competing metric learning objectives on visual recognition, verification, and retrieval
tasks. Specifically, we report much improved recognition and verification performance on our fine-
grained car and flower recognition datasets. In comparison to the softmax loss, N -pair-mc loss is as
competitive for recognition but significantly better for verification. Moreover, we demonstrate sub-
stantial improvement in image clustering and retrieval tasks on Online product [21], Car-196 [12],
and CUB-200 [25], as well as face verification and identification accuracy on LFW database [8].

2 Preliminary: Distance Metric Learning
Let x ∈ X be an input data and y ∈ {1, · · · , L} be its output label. We use x+ and x− to denote
positive and negative examples of x, meaning that x and x+ are from the same class and x− is from
different class to x. The kernel f(·; θ) : X → RK takes x and generates an embedding vector f(x).
We often omit x from f(x) for simplicity, while f inherits all superscripts and subscripts.

Contrastive loss [3, 7] takes pairs of examples as input and trains a network to predict whether two
inputs are from the same class or not. Specifically, the loss is written as follows:

Lm
cont(xi, xj ; f) = 1{yi = yj}‖fi − fj‖22 + 1{yi 6= yj}max

(
0,m− ‖fi − fj‖2

)2
(1)

where m is a margin parameter imposing the distance between examples from different classes to
be larger than m. Triplet loss [27, 2, 19] shares a similar spirit to contrastive loss, but is composed
of triplets, each consisting of a query, a positive example (to the query), and a negative example:

Lm
tri (x, x

+, x−; f) = max
(
0, ‖f − f+‖22 − ‖f − f−‖22 +m

)
(2)

Compared to contrastive loss, triplet loss only requires the difference of (dis-)similarities between
positive and negative examples to the query point to be larger than a margin m. Despite their wide
use, both loss functions are known to suffer from slow convergence and they often require expensive
data sampling method to provide nontrivial pairs or triplets to accelerate the training [2, 19, 17, 4].

3 Deep Metric Learning with Multiple Negative Examples
The fundamental philosophy behind triplet loss is the following: for an input (query) example, we
desire to shorten the distances between its embedding vector and those of positive examples while
enlarging the distances between that of negative examples. However, during one update, the triplet
loss only compares an example with one negative example while ignoring negative examples from
the rest of the classes. As a consequence, the embedding vector for an example is only guaranteed
to be far from the selected negative class but not necessarily the others. Thus we can end up only
differentiating an example from a limited selection of negative classes yet still maintain a small
distance from many other classes. In practice, the hope is that, after looping over sufficiently many
randomly sampled triplets, the final distance metric can be balanced correctly; but individual update
can still be unstable and the convergence would be slow. Specifically, towards the end of training,
most randomly selected negative examples can no longer yield non-zero triplet loss error.
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An evident way to improve the vanilla triplet loss is to select a negative example that violates the
triplet constraint. However, hard negative data mining can be expensive with a large number of out-
put classes for deep metric learning. We seek an alternative: a loss function that recruits multiple
negatives for each update, as illustrated by Figure 1. In this case, an input example is being com-
pared against negative examples from multiple classes and it needs to be distinguishable from all of
them at the same time. Ideally, we would like the loss function to incorporate examples across every
class all at once. But it is usually not attainable for large scale deep metric learning due to the mem-
ory bottleneck from the neural network based embedding. Motivated by this thought process, we
propose a novel, computationally feasible loss function, illustrated by Figure 2, which approximates
our ideal loss by pushing N examples simultaneously.

3.1 Learning to identify from multiple negative examples
We formalize our proposed method, which is optimized to identify a positive example from multiple
negative examples. Consider an (N+1)-tuplet of training examples {x, x+, x1, · · · , xN−1}: x+ is a
positive example to x and {xi}N−1i=1 are negative. The (N+1)-tuplet loss is defined as follows:

L({x, x+, {xi}N−1i=1 }; f) = log
(
1 +

N−1∑
i=1

exp(f>fi − f>f+)
)

(3)

where f(·; θ) is an embedding kernel defined by deep neural network. Recall that it is desirable for
the tuplet loss to involve negative examples across all classes but it is impractical in the case when
the number of output classes L is large; even if we restrict the number of negative examples per
class to one, it is still too heavy-lifting to perform standard optimization, such as stochastic gradient
descent (SGD), with a mini-batch size as large as L.

When N = 2, the corresponding (2+1)-tuplet loss highly resembles the triplet loss as there is only
one negative example for each pair of input and positive examples:

L(2+1)-tuplet({x, x+, xi}; f) = log
(
1 + exp(f>fi − f>f+)

)
; (4)

Ltriplet({x, x+, xi}; f) =max
(
0, f>fi − f>f+

)
. (5)

Indeed, under mild assumptions, we can show that an embedding f minimizes L(2+1)-tuplet if and
only if it minimizes Ltriplet, i.e., two loss functions are equivalent.1When N > 2, we further argue
the advantages of (N+1)-tuplet loss over triplet loss. We compare (N+1)-tuplet loss with the triplet
loss in terms of partition function estimation of an ideal (L+1)-tuplet loss, where an (L+1)-tuplet
loss coupled with a single example per negative class can be written as follows:

log
(
1 +

L−1∑
i=1

exp(f>fi − f>f+)
)
= − log

exp(f>f+)

exp(f>f+) +
∑L−1

i=1 exp(f>fi)
(6)

Equation (6) is similar to the multi-class logistic loss (i.e., softmax loss) formulation when we view
f as a feature vector, f+ and fi’s as weight vectors, and the denominator on the right hand side
of Equation (6) as a partition function of the likelihood P (y = y+). We observe that the partition
function corresponding to the (N+1)-tuplet approximates that of (L+1)-tuplet, and larger the value
of N , more accurate the approximation. Therefore, it naturally follows that (N+1)-tuplet loss is a
better approximation than the triplet loss to an ideal (L+1)-tuplet loss.

3.2 N -pair loss for efficient deep metric learning
Suppose we directly apply the (N+1)-tuplet loss to the deep metric learning framework. When the
batch size of SGD is M , there are M×(N+1) examples to be passed through f at one update. Since
the number of examples to evaluate for each batch grows in quadratic toM andN , it again becomes
impractical to scale the training for a very deep convolutional networks.

Now, we introduce an effective batch construction to avoid excessive computational burden. Let
{(x1, x+1 ), · · · , (xN , x

+
N )} be N pairs of examples from N different classes, i.e., yi 6= yj ,∀i 6= j.

We build N tuplets, denoted as {Si}Ni=1, from the N pairs, where Si = {xi, x+1 , x
+
2 , · · · , x

+
N}.

Here, xi is the query for Si, x+i is the positive example and x+j , j 6= i are the negative examples.

1We assume f to have unit norm in Equation (5) to avoid degeneracy.
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Figure 2: Triplet loss, (N+1)-tuplet loss, and multi-class N -pair loss with training batch construc-
tion. Assuming each pair belongs to a different class, the N -pair batch construction in (c) leverages
all 2×N embedding vectors to build N distinct (N+1)-tuplets with {fi}Ni=1 as their queries; there-
after, we congregate these N distinct tuplets to form the N -pair-mc loss. For a batch consisting
of N distinct queries, triplet loss requires 3N passes to evaluate the necessary embedding vectors,
(N+1)-tuplet loss requires (N+1)N passes and our N -pair-mc loss only requires 2N .

Figure 2(c) illustrates this batch construction process. The corresponding (N+1)-tuplet loss, which
we refer to as the multi-class N -pair loss (N -pair-mc), can be formulated as follows:2

LN -pair-mc({(xi, x+i )}
N
i=1; f) =

1

N

N∑
i=1

log
(
1 +

∑
j 6=i

exp(f>i f
+
j − f

>
i f

+
i )
)

(7)

The mathematical formulation of our N -pair loss shares similar spirits with other existing methods,
such as the neighbourhood component analysis (NCA) [6] and the triplet loss with lifted struc-
ture [21].3 Nevertheless, our batch construction is designed to achieve the utmost potential of such
(N+1)-tuplet loss, when using deep CNNs as embedding kernel on large scale datasets both in terms
of training data and number of output classes. Therefore, the proposed N -pair-mc loss is a novel
framework consisting of two indispensable components: the (N+1)-tuplet loss, as the building block
loss function, and the N -pair construction, as the key to enable highly scalable training. Later in
Section 4.4, we empirically show the advantage of our N -pair-mc loss framework in comparison to
other variations of mini-batch construction methods.

Finally, we note that the tuplet batch construction is not specific to the (N+1)-tuplet loss. We call the
set of loss functions using tuplet construction method an N -pair loss. For example, when integrated
into the standard triplet loss, we obtain the following one-vs-one N -pair loss (N -pair-ovo):

LN -pair-ovo({(xi, x+i )}
N
i=1; f) =

1

N

N∑
i=1

∑
j 6=i

log
(
1 + exp(f>i f

+
j − f

>
i f

+
i )
)
. (8)

3.2.1 Hard negative class mining
The hard negative data mining is considered as an essential component to many triplet-based distance
metric learning algorithms [19, 17, 4] to improve convergence speed or the final discriminative
performance. When the number of output classes are not too large, it may be unnecessary for N -
pair loss since the examples from most of the negative classes are considered jointly already. When
we train on the dataset with large output classes, the N -pair loss can be benefited from carefully
selected impostor examples.

Evaluating deep embedding vectors for multiple examples from large number of classes is computa-
tionally demanding. Moreover, for N -pair loss, one theoretically needs N classes that are negative
to one another, which substantially adds to the challenge of hard negative search. To overcome such
difficulty, we propose negative “class” mining, as opposed to negative “instance” mining, which
greedily selects negative classes in a relatively efficient manner.

More specifically, the negative class mining for N -pair loss can be executed as follows:

2We also consider the symmetric loss to Equation (7) that swaps f and f+ to maximize the efficacy.
3Our N -pair batch construction can be seen as a special case of lifted structure [21] where the batch includes

only positive pairs that are from disjoint classes. Besides, the loss function in [21] is based on the max-margin
formulation, whereas we optimize the log probability of identification loss directly.
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1. Evaluate Embedding Vectors: choose randomly a large number of output classes C; for each
class, randomly pass a few (one or two) examples to extract their embedding vectors.

2. Select Negative Classes: select one class randomly from C classes from step 1. Next, greedily
add a new class that violates triplet constraint the most w.r.t. the selected classes till we reach
N classes. When a tie appears, we randomly pick one of tied classes [28].

3. Finalize N -pair: draw two examples from each selected class from step 2.

3.2.2 L2 norm regularization of embedding vectors
The numerical value of f>f+ can be influenced by not only the direction of f+ but also its norm,
even though the classification decision should be determined merely by the direction. Normalization
can be a solution to avoid such situation, but it is too stringent for our loss formulation since it bounds
the value of |f>f+| to be less than 1 and makes the optimization difficult. Instead, we regularize
the L2 norm of the embedding vectors to be small.

4 Experimental Results
We assess the impact of our proposedN -pair loss functions, such as multi-classN -pair loss (N -pair-
mc) or one-vs-one N -pair loss (N -pair-ovo), on several generic and fine-grained visual recognition
and verification tasks. As a baseline, we also evaluate the performance of triplet loss with negative
data mining4 (triplet-nm). In our experiments, we draw a pair of examples from two different classes
and then form two triplets: each with one of the positive examples as query, the other one as positive,
(any) one of the negative examples as negative. Thus, a batch of 2N training examples can produce
N = 2N

4 × 2 triplets, which is more efficient than the formulation in Equation (2) that we need 3N
examples to formN triplets. We adapt the smooth upper bound of triplet loss in Equation (4) instead
of large-margin formulation [27] in all our experiments to be consistent with N -pair-mc losses.

We use Adam [11] for mini-batch stochastic gradient descent with data augmentation, namely hor-
izontal flips and random crops. For evaluation, we extract a feature vector and compute the cosine
similarity for verification. When more than one feature vectors are extracted via horizontal flip or
from multiple crops, we use the cosine similarity averaged over all possible combinations between
feature vectors of two examples. For all our experiments except for the face verification, we use
ImageNet pretrained GoogLeNet5 [23] for network initialization; for face verification, we use the
same network architecture as CasiaNet [31] but trained from scratch without the last fully-connected
layer for softmax classification. Our implementation is based on Caffe [10].

4.1 Fine-grained visual object recognition and verification
We evaluate deep metric learning algorithms on fine-grained object recognition and verification
tasks. Specifically, we consider car and flower recognition problems on the following database:

• Car-333 [29] dataset is composed of 164, 863 images of cars from 333 model categories col-
lected from the internet. Following the experimental protocol [29], we split the dataset into
157, 023 images for training and 7, 840 for testing.

• Flower-610 dataset contains 61, 771 images of flowers from 610 different flower species and
among all collected, 58, 721 images are used for training and 3, 050 for testing.

We train networks for 40k iterations with 144 examples per batch. This corresponds to 72 pairs per
batch forN -pair losses. We perform 5-fold cross-validation on the training set and report the average
performance on the test set. We evaluate both recognition and verification accuracy. Specifically, we
consider verification setting where there are different number of negative examples from different
classes, and determine as success only when the positive example is closer to the query example than
any other negative example. Since the recognition task is involved, we also evaluate the performance
of deep networks trained with softmax loss. The summary results are given in Table 1.

We observe consistent improvement of 72-pair loss models over triplet loss models. Although the
negative data mining could bring substantial improvement to the baseline models, the performance
is not as competitive as 72-pair loss models. Moreover, the 72-pair loss models are trained without
negative data mining, thus should be more effective for deep metric learning framework. Between

4Throughout experiments, negative data mining refers to the negative class mining for both triplet and
N -pair loss instead of negative instance mining.

5https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
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Database, evaluation metric triplet triplet-nm 72-pair-ovo 72-pair-mc softmax

Car-333
Recognition 70.24±0.38 83.22±0.09 86.84±0.13 88.37±0.05 89.21±0.16

88.69±0.20†

VRF (neg=1) 96.78±0.04 97.39±0.07 98.09±0.07 97.92±0.06 96.19±0.07
VRF (neg=71) 48.96±0.35 65.14±0.24 73.05±0.25 76.02±0.30 55.36±0.30

Flower-610
Recognition 71.55±0.26 82.85±0.22 84.10±0.42 85.57±0.25 84.38±0.28

84.59±0.21†

VRF (neg=1) 98.73±0.03 99.15±0.03 99.32±0.03 99.50±0.02 98.72±0.04
VRF (neg=71) 73.04±0.13 83.13±0.15 87.42±0.18 88.63±0.14 78.44±0.33Table 1: Mean recognition and verification accuracy with standard error on the test set of Car-333

and Flower-610 datasets. The recognition accuracy of all models are evaluated using kNN classifier;
for models with softmax classifier, we also evaluate recognition accuracy using softmax classifier
(†). The verification accuracy (VRF) is evaluated at different numbers of negative examples.

N -pair loss models, the multi-class loss (72-pair-mc) shows better performance than the one-vs-one
loss (72-pair-ovo). As discussed in Section 3.1, superior performance of multi-class formulation is
expected since the N -pair-ovo loss is decoupled in the sense that the individual losses are generated
for each negative example independently.

When it compares to the softmax loss, the recognition performance of the 72-pair-mc loss models
are competitive, showing slightly worse on Car-333 but better on Flower-610 datasets. However, the
performance of softmax loss model breaks down severely on the verification task. We argue that the
representation of the model trained with classification loss is not optimal for verification tasks. For
example, examples near the classification decision boundary can still be classified correctly, but are
prone to be missed for verification when there are examples from different class near the boundary.

4.2 Distance metric learning for unseen object recognition
Distance metric learning allows to learn a metric that can be generalized to an unseen categories.
We highlight this aspect of deep metric learning on several visual object recognition benchmark.
Following the experimental protocol in [21], we evaluate on the following three datasets:

• Stanford Online Product [21] dataset is composed of 120, 053 images from 22, 634 online prod-
uct categories, and is partitioned into 59, 551 images of 11, 318 categories for training and
60, 502 images of 11, 316 categories for testing.

• Stanford Car-196 [12] dataset is composed of 16, 185 images of cars from 196 model categories.
The first 98 model categories are used for training and the rest for testing.

• Caltech-UCSD Birds (CUB-200) [25] dataset is composed of 11, 788 images of birds from 200
different species. Similarly, we use the first 100 categories for training.

Unlike in Section 4.1, the object categories between train and test sets are disjoint. This makes the
problem more challenging since deep networks can easily overfit to the categories in the train set
and generalization of distance metric to unseen object categories could be difficult.

We closely follow experimental setting of [21]. For example, we initialize the network using Ima-
geNet pretrained GoogLeNet and train for 20k iterations using the same network architecture (e.g.,
64 dimensional embedding for Car-196 and CUB-200 datasets and 512 dimensional embedding for
Online product dataset) and the number of examples (e.g., 120 examples) per batch. Besides, we
use Adam for stochastic optimization and other hyperparameters such as learning rate are tuned ac-
cordingly via 5-fold cross-validation on the train set. We report the performance for both clustering
and retrieval tasks using F1 and normalized mutual information (NMI) [16] scores for clustering as
well as recall@K [9] score for retrieval in Table 2.

We observe similar trend as in Section 4.1. The triplet loss model performs the worst among all
losses considered. Negative data mining can alleviate the model to escape from the local optimum,
but the N -pair loss models outperforms even without additional computational cost for negative
data mining. The performance of N -pair loss further improves when combined with the proposed
negative data mining. Overall, we improve by 9.6% on F1 score, 1.99% on NMI score, and 14.41%
on recall@1 score on Online product dataset compared to the baseline triplet loss models. Lastly,
our model outperforms the performance of triplet loss with lifted structure [21], which demonstrates
the effectiveness of the proposed N pair batch construction.
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Online product

triplet triplet-nm triplet-lifted
60-pair-ovo 60-pair-ovo

60-pair-mc 60-pair-mc
structure [21] -nm -nm

F1 19.59 24.27 25.6 23.13 25.31 26.53 28.19
NMI 86.11 87.23 87.5 86.98 87.45 87.77 88.10
K=1 53.32 62.39 61.8 60.71 63.85 65.25 67.73
K=10 72.75 79.69 79.9 78.74 81.22 82.15 83.76
K=100 87.66 91.10 91.1 91.03 91.89 92.60 92.98
K=1000 96.43 97.25 97.3 97.50 97.51 97.92 97.81

Car-196 CUB-200
triplet triplet-nm 60-pair-ovo 60-pair-mc triplet triplet-nm 60-pair-ovo 60-pair-mc

F1 24.73 27.86 33.52 33.55 21.88 24.37 25.21 27.24
NMI 58.25 59.94 63.87 63.95 55.83 57.87 58.55 60.39
K=1 53.84 61.62 69.52 71.12 43.30 46.47 48.73 50.96
K=2 66.02 73.48 78.76 79.74 55.84 58.58 60.48 63.34
K=4 75.91 81.88 85.80 86.48 67.30 71.03 72.08 74.29
K=8 84.18 87.81 90.94 91.60 77.48 80.17 81.62 83.22

Table 2: F1, NMI, and recall@K scores on the test set of online product [21], Car-196 [12], and
CUB-200 [25] datasets. F1 and NMI scores are averaged over 10 different random seeds for kmeans
clustering but standard errors are omitted due to space limit. The best performing model and those
with overlapping standard errors are bold-faced.

triplet triplet-nm 192-pair-ovo 192-pair-mc 320-pair-mc
VRF 95.88±0.30 96.68±0.30 96.92±0.24 98.27±0.19 98.33±0.17

Rank-1 55.14 60.93 66.21 88.58 90.17
DIR@FIR=1% 25.96 34.60 34.14 66.51 71.76Table 3: Mean verification accuracy (VRF) with standard error, rank-1 accuracy of closed set iden-

tification and DIR@FAR=1% rate of open-set identification [1] on LFW dataset. The number of
examples per batch is fixed to 384 for all models except for 320-pair-mc model.

4.3 Face verification and identification
Finally, we apply our deep metric learning algorithms on face verification and identification, a prob-
lem that determines whether two face images are the same identities (verification) and a problem that
identifies the face image of the same identity from the gallery with many negative examples (iden-
tification). We train our networks on the WebFace database [31], which is composed of 494, 414
images from 10, 575 identities, and evaluate the quality of embedding networks trained with dif-
ferent metric learning objectives on Labeled Faces in the Wild (LFW) [8] database. We follow the
network architecture in [31]. All networks are trained for 240k iterations, while the learning rate is
decreased from 0.0003 to 0.0001 and 0.00003 at 160k and 200k iterations, respectively. We report
the performance of face verification. The summary result is provided in Table 3.

The triplet loss model shows 95.88% verification accuracy, but the performance breaks down on
identification tasks. Although negative data mining helps, the improvement is limited. Compared to
these, theN -pair-mc loss model improves the performance by a significant margin. Furthermore, we
observe additional improvement by increasing N to 320, obtaining 98.33% for verification, 90.17%
for closed-set and 71.76% for open-set identification accuracy. It is worth noting that, although it
shows better performance than the baseline triplet loss models, the N -pair-ovo loss model performs
much worse than the N -pair-mc loss on this problem.

Interestingly, the N -pair-mc loss model also outperforms the model trained with combined con-
trastive loss and softmax loss whose verification accuracy is reported as 96.13% [31]. Since this
model is trained on the same dataset using the same network architecture, this clearly demonstrates
the effectiveness of our proposed metric learning objectives on face recognition tasks. Nevertheless,
there are other works reported higher accuracy for face verification. For example, [19] demonstrated
99.63% test set verification accuracy on LFW database using triplet network trained with hundred
millions of examples and [22] reported 98.97% by training multiple deep neural networks from
different facial keypoint regions with combined contrastive loss and softmax loss. Since our contri-
bution is complementary to the scale of the training data or the network architecture, it is expected
to bring further improvement by replacing the existing training objectives into our proposal.
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Figure 3: Training curve of triplet, 192-pair-ovo, and 192-pair-mc loss models on WebFace database.
We measure both (a) triplet and 192-pair loss as well as (b) classification accuracy.

Online product Car-196 CUB-200
60× 2 30× 4 60× 2 30× 4 10× 12 60× 2 30× 4 10× 12

F1 26.53 25.01 33.55 31.92 29.87 27.24 27.54 26.66
NMI 87.77 87.40 63.87 62.94 61.84 60.39 60.43 59.37
K=1 65.25 63.58 71.12 69.30 65.49 50.96 50.91 49.65

192× 2 96× 4 64× 6 32× 12
VRF 98.27±0.19 98.25±0.25 97.98±0.22 97.57±0.33

Rank-1 88.58 87.53 83.96 79.61
DIR@FIR=1% 66.51 66.22 64.38 56.46

Table 4: F1, NMI, and recall@1 scores on online product, Car-196, and CUB-200 datasets, and
verification and rank-1 accuracy on LFW database. For model name of N ×M , we refer N the
number of different classes in each batch and M the number of positive examples per class.

Finally, we provide training curve in Figure 3. Since the difference of triplet loss between models is
relatively small, we also measure 192-pair loss (and accuracy) of three models at every 5k iteration.
We observe significantly faster training progress using 192-pair-mc loss than triplet loss; it only
takes 15k iterations to reach at the loss at convergence of triplet loss model (240k iteration).

4.4 Analysis on tuplet construction methods
In this section, we highlight the importance of the proposed tuplet construction strategy using N
pairs of examples by conducting control experiments using different numbers of distinguishable
classes per batch while fixing the total number of examples per batch the same. For example, if we
are to use N/2 different classes per batch rather than N different classes, we select 4 examples from
each class instead of a pair of examples. Since N -pair loss is not defined to handle multiple positive
examples, we follow the definition of NCA in this experiments as follows:

L =
1

2N

∑
i

− log

∑
j 6=i:yj=yi

exp(f>i fj)∑
j 6=i exp(f

>
i fj)

(9)

We repeat experiments in Section 4.2 and 4.3 and provide the summary results in Table 4. We
observe a certain degree of performance drop as we decrease the number of classes. Despite, all of
these results are substantially better than those of triplet loss, confirming the importance of training
with multiple negative classes, and suggesting to train with as many negative classes as possible.

5 Conclusion
Triplet loss has been widely used for deep metric learning, even though with somewhat unsatisfac-
tory convergence. We present a scalable novel objective, multi-calss N -pair loss, for deep metric
learning, which significantly improves upon the triplet loss by pushing away multiple negative ex-
amples jointly at each update. We demonstrate the effectiveness of N -pair-mc loss on fine-grained
visual recognition and verification, as well as visual object clustering and retrieval.
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