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Abstract

Predicting structured outputs such as semantic segmen-

tation relies on expensive per-pixel annotations to learn

supervised models like convolutional neural networks. How-

ever, models trained on one data domain may not generalize

well to other domains without annotations for model fine-

tuning. To avoid the labor-intensive process of annotation,

we develop a domain adaptation method to adapt the source

data to the unlabeled target domain. We propose to learn dis-

criminative feature representations of patches in the source

domain by discovering multiple modes of patch-wise output

distribution through the construction of a clustered space.

With such representations as guidance, we use an adversarial

learning scheme to push the feature representations of target

patches in the clustered space closer to the distributions of

source patches. In addition, we show that our framework

is complementary to existing domain adaptation techniques

and achieves consistent improvements on semantic segmen-

tation. Extensive ablations and results are demonstrated on

numerous benchmark datasets with various settings, such as

synthetic-to-real and cross-city scenarios.

1. Introduction

With the availability of large-scale annotated datasets [8],

deep learning has made a significant impact on many com-

puter vision tasks, such as object recognition [14, 21], de-

tection [11], or semantic segmentation [3]. Unfortunately,

learned models may not generalize when evaluated on a

test domain different from the labeled training data [45].

Unsupervised domain adaptation (UDA) [10, 32] has been

proposed to close the performance gap introduced by the

mismatch between the source domain, where labeled data is

available, and the target domain. UDA circumvents an ex-

pensive data annotation process by utilizing only unlabeled

data from the target domain. Along this line, numerous UDA

methods have been developed and successfully applied for

classification tasks [1, 10, 23, 24, 32, 40, 41].

∗Now at Google Cloud AI.

Figure 1. Our method aims at improving output distribution align-

ment via: 1) patch mode discovery from the source patch annota-

tions to construct a clustered space and project to a feature space,

and 2) patch alignment from the target patch representation (unfilled

symbol) to the source distribution (solid symbols).

UDA is even more crucial for pixel-level prediction tasks

such as semantic segmentation as annotation is prohibitively

expensive. A prominent approach towards domain adap-

tation for semantic segmentation is distribution alignment

by adversarial learning [13, 10], where the alignment may

happen at different representation layers, such as pixel-

level [16, 48], feature-level [16, 17] or output-level [39].

Despite these efforts, discovering all modes of the data dis-

tribution is a key challenge for domain adaptation [38], akin

to difficulties also faced by generative tasks [2, 26].

A critical step during adversarial training is the use of

a convolutional discriminator [19, 16, 39] that classifies

patches into source or target domains. However, the dis-

criminator is not supervised to capture several modes in the

data distribution and it may end up learning only low-level

differences such as tone or texture across domains. In addi-

tion, for the task of semantic segmentation, it is important

to capture and adapt high-level patterns given the highly

structured output space.

In this work, we propose an unsupervised domain adap-
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tation method that explicitly discovers many modes in the

structured output space of semantic segmentation to learn

a better discriminator between the two domains, ultimately

leading to a better domain alignment. We leverage the pixel-

level semantic annotations available in the source domain,

but instead of directly working on the output space [39], our

adaptation happens in two stages. First, we extract patches

from the source domain, represent them using their annota-

tion maps and discover major modes by applying K-means

clustering, which groups patches into K clusters (Step A

in Figure 1). Each patch in the source domain can now be

assigned to a ground truth cluster or mode index. We then

introduce a K-way classifier that predicts the cluster or mode

index of each patch, which can be supervised in the source

domain but not in the target domain.

Second, different from the output space alignment [39],

our method, referred as patch-level alignment (Step B in

Figure 1) operates on the K-dimensional probability vector

space after projecting to the clustered space that already

discovers various patch modes. This is in contrast to prior

art that operates on either pixel- [48], feature- [16] or output-

level [39]. The learned discriminator on the clustered space

can back-propagate the gradient through the cluster or mode

index classifier to the semantic segmentation network.

In experiments, we follow the setting of [16] and per-

form pixel-level road-scene semantic segmentation. We ex-

periment under various settings, including synthetic-to-real

(GTA5 [30], SYNTHIA [31] to Cityscapes [7]) and cross-

city (Cityscapes to Oxford RobotCar [25]) adaptation. We

provide an extensive ablation study to validate each com-

ponent in the proposed framework. Our approach is also

complementary to existing domain adaptation techniques,

which we demonstrate by combining with output space adap-

tation [39], pixel-level adaptation [15] and pseudo label re-

training [50]. Our results show that the learned representa-

tions improve segmentation results consistently and achieve

state-of-the-art performance.

Our contributions are summarized as follows. First, we

propose an adversarial adaptation framework for structured

prediction that explicitly tries to discover and predict modes

of the output patches. Second, we demonstrate the com-

plementary nature of our approach by integration into three

existing domain adaptation methods, which can all benefit

from it. Third, we extensively analyze our approach and

show state-of-the-art results on various domain adaptation

benchmarks for semantic segmentation.1

2. Related Work

We discuss unsupervised domain adaptation methods for

image classification and pixel-level structured prediction

tasks, and works on learning disentangled representations.

1The project page is at www.nec-labs.com/˜mas/adapt-seg.

UDA for Image Classification. UDA methods have been

developed for classification by aligning the feature distri-

butions between the source and the target domains. Con-

ventional methods use hand-crafted features [9, 12] to min-

imize the discrepancy across domains, while recent algo-

rithms utilize deep architectures [10, 40] to learn domain-

invariant features. One common practice is to adopt adver-

sarial learning [10] or to minimize the Maximum Mean Dis-

crepancy [23]. Several variants have been developed by de-

signing different classifiers [24] and loss functions [40, 41],

and for distance metric learning [36, 37]. In addition, other

recent work aims to enhance feature representations by pixel-

level transfer [1] and maximum classifier discrepancy [33].

UDA for Semantic Segmentation. Following the practice

in image classification, domain adaptation for pixel-level

predictions has been studied. [16] introduces to tackle the

semantic segmentation problem for road-scene images by

adapting from synthetic images via aligning global feature

representations. In addition, a category-specific prior, e.g.,

object size and class distribution is extracted from the source

domain and is transferred to the target distribution as a con-

straint. Instead of designing such constraints, [46] applies

the SVM classifier to capture label distributions on super-

pixels as the property to train the adapted model. Similarly,

[6] proposes a class-wise domain adversarial alignment by

assigning pseudo labels to the target data.

More recently, numerous approaches are proposed to im-

prove the adapted segmentation and can be categorized as fol-

lows: 1) output space [39] and spatial-aware [5] adaptations

aim to align the global structure (e.g., scene layout) across

domains; 2) pixel-level adaptation synthesizes target sam-

ples [15, 27, 43, 47] to reduce the domain gap during training

the segmentation model; 3) pseudo-label re-training [34, 50]

generates pseudo ground truth of target images to finetune

the model trained on the source domain. While the most

relevant approaches to ours are from the first category, they

do not handle intrinsic domain gaps such as camera poses. In

contrast, the proposed patch-level alignment is able to match

patches at various image locations across domains. We also

note that, the other two categories or other techniques such

as robust loss function design [49] are orthogonal to the

contribution of this work. In Section 4.3, we show that our

patch-level representations can be integrated with other do-

main adaptation methods to further enhance performance.

Learning Disentangled Representations. Learning a la-

tent disentangled space has led to a better understanding for

numerous tasks such as facial recognition [29], image gener-

ation [4, 28], and view synthesis [22, 44]. These approaches

use predefined factors to learn interpretable representations

of the image. [22] propose to learn graphic codes that are dis-

entangled with respect to various image transformations, e.g.,
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Figure 2. An overview of our patch-level alignment. For our method, the category distribution is projected to the patch distribution through a

clustered space that is constructed by discovering K patch modes in the source domain. For the target data, we then align patch distributions

across domains using adversarial learning in this K-dimensional space. In comparison, note that output space adaptation methods only have

a step that directly aligns category distributions without considering multiple modes in the source data.

pose and lighting, for rendering 3D images. Similarly, [44]

synthesize 3D objects from a single image via an encoder-

decoder architecture that learns latent representations based

on the rotation factor. Recently, AC-GAN [28] develops a

generative adversarial network (GAN) with an auxiliary clas-

sifier conditioned on the given factors such as image labels

and attributes.

Although these methods present promising results on

using the specified factors and learning a disentangled space

to help the target task, they focus on handling data in a single

domain. Motivated by this line of research, we propose to

learn discriminative representations for patches to help the

domain adaptation task. To this end, we take advantage of

the available label distributions and naturally utilize them as

a disentangled factor, in which our framework does not need

to predefine any factors like conventional methods.

3. Domain Adaptation for Structured Output

In this section, we describe our framework for predicting

structured outputs: an adversarial learning scheme to align

distributions across domains by using discriminative output

representations of patches.

3.1. Algorithm Overview

Given the source and target images Is, It ∈ R
H×W×3,

where only the source data is annotated with per-pixel seman-

tic categories Ys, we seek to learn a semantic segmentation

model G that works on both domains. Since the target do-

main is unlabeled, our goal is to align the predicted output

distribution Ot of the target data with the source distribu-

tion Os, which is similar to [39]. However, such distri-

bution is not aware of the local difference in patches and

thus is not able to discover a diverse set of modes during

adversarial learning. To tackle this issue, and in contrast

to [39], we project the category distribution of patches to the

clustered space that already discovers various patch modes

(i.e., K clusters) based on the annotations in the source do-

main. For target data, we then employ adversarial learning

to align the patch-level distributions across domains in the

K-dimensional space.

3.2. Patch­level Alignment

As in Figure 2, we seek for ways to align patches in a

clustered space that provides a diverse set of patch modes.

One can also treat this procedure as learning prototypical

output representations of patches by clustering ground truth

segmentation annotations from the source domain. In what

follows, we introduce how we construct the clustered space

and learn discriminative patch representations. Then we

describe adversarial alignment using the learned patch repre-

sentation. The detailed architecture is shown in Figure 3.

Patch Mode Discovery. To discover modes and learn a

discriminative feature space, class labels [35] or predefined

factors [28] are usually provided as supervisory signals.

However, it is non-trivial to assign a class membership to
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Figure 3. The proposed network architecture that consists of a generator G and a categorization module H for learning discriminative patch

representations through 1) patch mode discovery supervised by the patch classification loss Ld, and 2) patch-level alignment using the

adversarial loss Ladv . In the projected space, solid symbols denote source representations and unfilled ones are target representations pulled

to the source distribution.

individual patches of an image. One may apply unsupervised

clustering of image patches, but it is unclear whether the con-

structed clustering would separate patches in a semantically

meaningful way. In this work, we make use of per-pixel

annotations available in the source domain to construct a

space of semantic patch representation. To achieve this, we

use label histograms for patches. We first randomly sample

patches from source images, use a 2-by-2 grid on patches

to extract spatial label histograms, and concatenate them to

obtain a 2× 2×C dimensional vector. Second, we apply

K-means clustering on these histograms, thereby assigning

each ground truth label patch a unique cluster index. We

define the process of finding the cluster membership for each

patch in a ground truth label map Ys as Γ(Ys).
To incorporate this clustered space for training the seg-

mentation network G on source data, we add a classification

module H on top of the predicted output Os, which tries

to predict the cluster membership Γ(Ys) for all locations.

We denote the learned representation as Fs = H(G(Is)) ∈
(0, 1)U×V×K through the softmax function, where K is the

number of clusters. Here, each data point on the spatial map

Fs corresponds to a patch of the input image, and we obtain

the group label for each patch via Γ(Ys). Then the learning

process to construct the clustered space can be formulated

as a cross-entropy loss:

Ld(Fs,Γ(Ys);G,H) = −
∑

u,v

∑

k∈K

CE(u,v,k) , (1)

where CE(u,v,k) = Γ(Ys)
(u,v,k) log(F

(u,v,k)
s ).

Adversarial Alignment. The ensuing task is to align the

representations of target patches to the clustered space con-

structed in the source domain, ideally aligned to one of the

K modes. To this end, we utilize an adversarial loss between

Fs and Ft, where Ft is generated in the same way as de-

scribed above. Note that, the patch-level feature F is now

transformed from the category distribution O to the clustered

space defined by K-dimensional vectors. We then formulate

the patch distribution alignment in an adversarial objective:

Ladv(Fs, Ft;G,H,D) =
∑

u,v

E[logD(Fs)
(u,v,1)] (2)

+E[log(1−D(Ft)
(u,v,1))],

where D is the discriminator to classify whether the feature

representation F is from the source or the target domain.

Learning Objective. We integrate (1) and (2) into the min-

max problem (for clarity, we drop all arguments to losses

except the optimization variables):

min
G,H

max
D

Ls(G) + λdLd(G,H) (3)

+λadvLadv(G,H,D),

where Ls is the supervised cross-entropy loss for learning

the structured prediction (e.g., semantic segmentation) on

source data, and λ’s are the weights for different losses.

3.3. Network Optimization

To solve the optimization problem in Eq. (3), we follow

the procedure of training GANs [13] and alternate two steps:

1) update the discriminator D, and 2) update the networks

G and H while fixing the discriminator.

Update the Discriminator D. We train the discriminator

D to classify whether the feature representation F is from

the source (labeled as 1) or the target domain (labeled as
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0). The maximization problem with respect to D in (3) is

equivalent to minimizing the binary cross-entropy loss:

LD(Fs, Ft;D) = −
∑

u,v

log(D(Fs)
(u,v,1)) (4)

+ log(1−D(Ft)
(u,v,1)).

Update the Networks G and H. The goal of this step is

to push the target distribution closer to the source distribution

using the optimized D, while maintaining good performance

on the main tasks using G and H. As a result, the minimiza-

tion problem in (3) is the combination of two supervised loss

functions with the adversarial loss, which can be expressed

as a binary cross-entropy function that assigns the source

label to the target distribution:

LG,H = Ls + λdLd − λadv

∑

u,v

log(D(Ft)
(u,v,1)). (5)

We note that updating H also influences G through back-

propagation, and thus the feature representations are en-

hanced in G. In addition, we only require H during the

training phase, so that runtime for inference is unaffected

compared to the output space adaptation approach [39].

3.4. Implementation Details

Network Architectures. The generator consists of the net-

work G with a categorization module H. For a fair com-

parison, we follow the framework used in [39] that adopts

DeepLab-v2 [3] with the ResNet-101 architecture [14] as

our baseline network G. To add the module H on the out-

put prediction O, we first use an adaptive average pooling

layer to generate a spatial map, where each data point on

the map has a desired receptive field corresponding to the

size of extracted patches. Then this pooled map is fed into

two convolution layers and a feature map F is produced

with the channel number K. Figure 3 illustrates the main

components of the proposed architecture. For the discrimi-

nator D, input data is a K-dimensional vector and we utilize

3 fully-connected layers similar to [41], with leaky ReLU

activation and channel numbers {256, 512, 1}.

Implementation Details. We implement the proposed

framework using the PyTorch toolbox on a single Titan X

GPU with 12 GB memory. To train the discriminators, we

use the Adam optimizer [20] with initial learning rate of

10−4 and momentums set as 0.9 and 0.99. For learning the

generator, we use the Stochastic Gradient Descent (SGD)

solver where the momentum is 0.9, the weight decay is

5 × 10−4 and the initial learning rate is 2.5 × 10−4. For

all the networks, we decrease the learning rates using the

polynomial decay with a power of 0.9, as described in [3].

During training, we select λd = 0.01, λadv = 0.0005 and

K = 50 fixed for all the experiments. Note that we first train

the model only using the loss Ls for 10K iterations to avoid

initially noisy predictions and then train the network using all

the loss functions. More details of the hyper-parameters such

as image and patch sizes are provided in the supplementary

material.

4. Experimental Results

We evaluate the proposed framework for domain adapta-

tion on semantic segmentation. We first conduct an extensive

ablation study to validate key components of our algorithm.

Second, we show that the proposed method can be integrated

with various domain adaptation techniques, including out-

put space adaptation [39], pixel-level adaptation [15], and

pseudo label re-training [50]. This demonstrates that our

learned patch-level representations are complementary to

a wide range of domain adaptation strategies and provide

additional benefits. Finally, we present a hybrid model that

performs favorably against state-of-the-art approaches on

numerous benchmark datasets and settings.

4.1. Evaluated Datasets and Metric

We evaluate our domain adaptation method on semantic

segmentation under various settings, including synthetic-to-

real and cross-city. First, we adapt the synthetic GTA5 [30]

dataset to the Cityscapes [7] dataset that contains real road-

scene images. Similarly, we use the SYNTHIA [31] dataset,

which has a larger domain gap to Cityscapes images. For

these experiments, we follow [16] to split data into train-

ing and test sets. As another example with high practical

impact, we apply our method on data captured in different

cities and weather conditions by adapting Cityscapes with

sunny images to the Oxford RobotCar [25] dataset contain-

ing rainy scenes. We manually select 10 sequences in the

Oxford RobotCar dataset tagged as “rainy” and randomly

split them into 7 sequences for training and 3 for testing. We

sequentially sample 895 images for training and annotate

271 images with per-pixel semantic segmentation ground

truth as the test set for evaluation. The annotated ground

truths are made publicly available at the project page. For

all experiments, Intersection-over-Union (IoU) ratio is used

as the evaluation metric.

4.2. Ablation Study and Analysis

In Table 1, we conduct the ablation study and analy-

sis of the proposed patch-level alignment on the GTA5-to-

Cityscapes scenario to understand the impact of different

loss functions and design choices in our framework.

Loss Functions. In Table 1, we show different steps of the

proposed method, including the model without adaptation,

using discriminative patch features and the final patch-level

alignment. Interestingly, we find that adding discriminative
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Figure 4. Visualization of patch-level representations. We first show feature representations for our method using t-SNE and compare to the

baseline without the proposed patch-level alignment. In addition, we show patch examples in the clustered space. In each group, patches are

similar in appearance (each color represents a semantic label) between the source and target domains.

Table 1. Ablation study of the proposed loss functions on GTA5-

to-Cityscapes using the ResNet-101 network.

GTA5 → Cityscapes

Method Loss Func. mIoU

Without Adaptation Ls 36.6

Discriminative Feature Ls + Ld 38.8

Patch-level Alignment Ls + Ld + Ladv 41.3

patch representations without any alignments (Ls + Ld) al-

ready improves the performance (from 36.6% to 38.8%),

which demonstrates that the learned feature representation

enhances the discrimination and generalization ability. Fi-

nally, the proposed patch-level adversarial alignment im-

proves the mIoU by 4.7%.

Impact of Learning Clustered Space. K-means pro-

vides an additional signal to separate different patch pat-

terns, while performing alignment in this clustered space.

Without the clustered loss Ld, it would be difficult to align

patch modes across two domains. To validate it, we run an

experiment by only using Ls and Ladv but removing Ld,

and the performance is reduced by 1.9% compared to our

method (41.3%). This shows the importance of learning the

clustered space supervised by the K-means process.

Impact of Cluster Number K. In Figure 5, we study the

impact of the cluster number K used to construct the patch

representation, showing that the performance is robust to

K. However, when K is too large, e.g., larger than 300, it

would cause confusion between patch modes and increases

the training difficulty. To keep both efficiency and accuracy,

we use K = 50 throughout the experiments.

Visualization of Feature Representations. In Figure 4,

we show the t-SNE visualization [42] of the patch-level

features in the clustered space of our method and compare

with the one without patch-level adaptation. The result shows

that with adaptation in the clustered space, the features are

Figure 5. The performance of our method with respect to different

numbers of clusters K on GTA5-to-Cityscapes.

embedded into groups and the source/target representations

overlap well. In addition, we present example source/target

patches with high similarity.

4.3. Improvement on Domain Adaptation Methods

The learned patch representation via the proposed patch

alignment enhances feature representations and is comple-

mentary to various DA methods, which we demonstrate by

combining with output-space adaptation (Ou), pixel-level

adaptation (Pi) and pseudo label re-training (Ps). Our results

show consistent improvement in all cases, e.g., 1.8% to 2.7%

on GTA5-to-Cityscapes, as shown in Table 2.

Output Space Adaptation. We first consider methods

that align the global layout across domains as in [5, 39].

Our proposed cluster prediction network H and the corre-

sponding loss Ladv can be simply added into [39]. Since

these methods only align the global structure, adding our

method helps figuring out local details better and improves

the segmentation quality.

Pixel-level Adaptation. We utilize CyCADA [15] as the

pixel-level adaptation algorithm and produce synthesized

images in the target domain from source images. To train

our model, we add synthesized samples into the labeled

training set with the proposed patch-level alignment. Note

that, since synthesized samples share the same pixel-level
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Target Image Ground Truth Before Adaptation Output Alignment Patch Alignment
Figure 6. Example results for GTA5-to-Cityscapes. Our method often generates the segmentation with more details (e.g., sidewalk and pole)

while producing less noisy regions compared to the output space adaptation approach [39].

Table 2. Performance improvements in mIoU of integrating our

patch-level alignment with existing domain adaptation approaches

on GTA5-to-Cityscapes using the ResNet-101 network.

GTA5 → Cityscapes (19 Categories)

Methods Base + Patch-Alignment ∆

Without Adaptation 36.6 41.3 +4.7

(Ou)tput Space Ada. 41.4 43.2 +1.8

(Pi)xel-level Ada. 42.2 44.9 +2.7

(Ps)eudo-GT 41.8 44.2 +2.4

(Fu)sion 44.5 46.5 +2.0

annotations as the source data, they can be also considered

in our clustering process and the optimization in (3).

Pseudo-label Re-training. Pseudo-label re-training is a

natural way to improve the segmentation quality in domain

adaptation [50] or semi-supervised learning [18]. The end-

to-end trainable framework [18] uses an adversarial scheme

to identify self-learnable regions, which makes it an ideal

candidate to integrate our patch-level adversarial loss.

Results and Discussions. The results for combining the

proposed patch-level alignment with the three above men-

tioned DA methods are shown in Tables 2 and 3 for GTA5-to-

Cityscapes and SYNTHIA-to-Cityscapes, respectively. We

can observe that adding patch-level alignment improves in

all cases. For reference, we also show the gain from adding

patch-level alignment to the plain segmentation network

(without adaptation). Even when combining all three DA

methods, i.e., Fusion (Fu), the proposed patch-alignment

further improves the results significantly (≥ 2.0%). Note

that, the combination of all DA methods including patch

alignment, i.e., Fu + Patch-Alignment, achieves the best

performance in both cases.

As a comparison point, we also try to combine pixel-

level adaptation with output space alignment (Pi + Ou), but

the performance is 0.7% worse than ours, i.e., Pi + Patch-

Alignment, showing the advantages of adopting patch-level

alignment. On SYNTHIA-to-Cityscapes in Table 3, we find

that Pi and Ps are less effective than Ou, likely due to the

poor quality of the input data in the source domain, which

Table 3. Performance improvements in mIoU of integrating our

patch-level alignment with existing domain adaptation approaches

on SYNTHIA-to-Cityscapes using the ResNet-101 network.

SYNTHIA → Cityscapes (16 Categories)

Methods Base + Patch-Alignment ∆

Without Adaptation 33.5 37.0 +3.5

(Ou)tput Space Ada. 39.5 39.9 +0.4

(Pi)xel-level Ada. 35.8 37.0 +1.2

(Ps)eudo-GT 37.4 38.9 +1.5

(Fu)sion 37.9 40.0 +2.1

also explains the lower performance of the combined model

(Fu). This also indicates that directly combining different DA

methods may not improve the performance incrementally.

However, adding the proposed patch-alignment improves the

results consistently in all settings.

4.4. Comparisons with State­of­the­art Methods

We have validated that the proposed patch-level alignment

is complementary to existing domain adaptation methods

on semantic segmentation. In the following, we compare

our final model (Fu + Patch-Alignment) with state-of-the-art

algorithms under various scenarios, including synthetic-to-

real and cross-city cases.

Synthetic-to-real Case. We first present experimental re-

sults for adapting GTA5 to Cityscapes in Table 4. We utilize

two different architectures, i.e., VGG-16 and ResNet-101,

and compare with state-of-the-art approaches via feature

adaptation [16, 46], pixel-level adaptation [15], pseudo label

re-training [50] and output space alignment [5, 39]. We show

that the proposed framework improves over existing meth-

ods by 2.5% and 5.1% in mean IoU for two architectures,

respectively. In Table 5, we present results for adapting SYN-

THIA to Cityscapes and similar improvements are observed

compared to state-of-the-arts. In addition, we shows visual

comparisons in Figure 6 and more results are presented in

the supplementary material.

Cross-city Case. Adapting between real images across

different cities and conditions is an important scenario for
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Table 4. Results of adapting GTA5 to Cityscapes. The first and second groups adopt VGG-16 and ResNet-101 networks, respectively.

GTA5 → Cityscapes

Method ro
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mIoU

FCNs in the Wild [16] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CDA [46] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

ST [50] 83.8 17.4 72.1 14.3 2.9 16.5 16.0 6.8 81.4 24.2 47.2 40.7 7.6 71.7 10.2 7.6 0.5 11.1 0.9 28.1

CBST [50] 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9

CyCADA [15] 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8

Output Space [39] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

Ours (VGG-16) 87.3 35.7 79.5 32.0 14.5 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 15.5 4.1 37.5

Without Adaptation 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

Feature Space [39] 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.3

Road [5] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4

Output Space [39] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

Ours (ResNet-101) 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

Table 5. Results of adapting SYNTHIA to Cityscapes. The first and second groups adopt VGG-16 and ResNet-101 networks, respectively.

mIoU and mIoU∗ are averaged over 16 and 13 categories, respectively.
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mIoU mIoU∗

FCNs in the Wild [16] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2 22.1

CDA [46] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

Cross-City [6] 62.7 25.6 78.3 - - - 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 - 35.7

ST [50] 0.2 14.5 53.8 1.6 0.0 18.9 0.9 7.8 72.2 80.3 48.1 6.3 67.7 4.7 0.2 4.5 23.9 27.8

Output Space [39] 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

Ours (VGG-16) 72.6 29.5 77.2 3.5 0.4 21.0 1.4 7.9 73.3 79.0 45.7 14.5 69.4 19.6 7.4 16.5 33.7 39.6

Without Adaptation 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

Feature Space [39] 62.4 21.9 76.3 11.5 0.1 24.9 11.7 11.4 75.3 80.9 53.7 18.5 59.7 13.7 20.6 24.0 35.4 40.8

Output Space [39] 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9

Ours (ResNet-101) 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

practical applications. We choose a challenging case where

the weather condition is different (i.e., sunny v.s. rainy)

in two cities by adapting Cityscapes to Oxford RobotCar.

The proposed framework achieves a mean IoU of 72.0%
averaged on 9 categories, significantly improving the model

without adaptation by 10.1%. To compare with the output

space adaptation method [39], we run the code released

by the authors and obtain a mean IoU of 69.5%, which is

2.5% lower than the proposed method. Further results and

comparisons are provided in the supplementary material.

5. Conclusions

In this paper, we present a domain adaptation method for

structured output via patch-level alignment. We propose to

learn discriminative representations of patches by construct-

ing a clustered space of the source patches and adopt an

adversarial learning scheme to push the target patch distribu-

tions closer to the source ones. With patch-level alignment,

our method is complementary to various domain adaptation

approaches and provides additional improvement. We con-

duct extensive ablation studies and experiments to validate

the effectiveness of the proposed method under numerous

challenges on semantic segmentation, including synthetic-

to-real and cross-city scenarios, and show that our approach

performs favorably against previous methods.
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