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Abstract

We address the challenging task of occlusion-aware in-
door 3D scene understanding. We represent scenes by a set
of planes, where each one is defined by its normal, offset and
two masks outlining (i) the extent of the visible part and (ii)
the full region that consists of both visible and occluded parts
of the plane. We infer these planes from a single input image
with a novel neural network architecture. It consists of a two-
branch category-specific module that aims to predict layout
and objects of the scene separately so that different types of
planes can be handled better. We also introduce a novel loss
function based on plane warping that can leverage multiple
views at training time for improved occlusion-aware reason-
ing. In order to train and evaluate our occlusion-reasoning
model, we use the ScanNet dataset [1] and propose (i) a
strategy to automatically extract ground truth for both visi-
ble and hidden regions and (ii) a new evaluation metric that
specifically focuses on the prediction in hidden regions. We
empirically demonstrate that our proposed approach can
achieve higher accuracy for occlusion reasoning compared
to competitive baselines on the ScanNet dataset, e.g. 42.65%
relative improvement on hidden regions.

1. Introduction

Reasoning about occlusions occurring in the 3D world is
an ability at which human visual perception excels. While
we develop an understanding for the concept of object per-
manence already as toddlers, for instance by playing peek-a-
boo, it is a very challenging skill for machine intelligence to
acquire, since it requires strong contextual and prior knowl-
edge about objects and scenes. This is particularly true for
indoor scenes where the composition of objects and scenes is
highly complex and leads to numerous and strong occlusions.
And while several works exist that investigate this problem
for outdoor scenes [5, 13, 24], there has been comparatively
little work for indoor scenes. But indoor applications that
can potentially benefit from occlusion reasoning are ample,
like robot navigation or augmented reality.

⇤Part of this work was conducted during a summer internship at NEC
Laboratories America.
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Figure 1: Given a single image as input, our model predicts
planes to describe both visible and occluded areas of the
scene with separate branches for objects and layout (top).
This model can be used for occlusion reasoning and novel
view synthesis (bottom).

To address the problem of occlusion reasoning, the first
step is to find a suitable representation to describe scenes.
Prior work has explored several representations like 3D
bounding boxes for objects [4, 28] or voxels [19]. How-
ever, the former representation is rather coarse for general
objects and is not suitable for scene layouts, while the latter
has a significant memory footprint. Most recently, layered
depth images (LDI) [18] have been leveraged for predicting
scene geometry in occluded areas [3, 22], which was also
extended to the object level [2]. We rely on planes as another
promising representation that shows several benefits over
the aforementioned ones. Planes can compactly describe
scenes in a semi-parametric way: each plane is defined by
a normal vector, an offset and a (non-parametric) mask to



outline its extent. Liu et al. [10] have recently demonstrated
these benefits with their Plane-RCNN model, but it focuses
mainly on the visible part of the scene.

In this work, we extend Plane-RCNN [10] to infer a full
scene representation that also reasons about hidden areas
of the input scene. Starting with a Plane-RCNN model that
predicts both the visible and occluded extent of each plane,
we propose a novel network architecture that separates the
prediction of planes based on semantics, see Sec. 3.2. Given
the often stark difference in size and shape of planes on
“foreground” objects, like chairs or tables, and planes on
“background” stuff, like walls, separating the predictions
lowers output space variations and thus eases network op-
timization. With our proposed merging strategy, this novel
architecture design significantly boosts performance, par-
ticularly in hidden areas. Finally, we also present a novel
objective that is based on warping planes from one view
to another to obtain a training signal if multi-view input is
available, which additionally improves performance. Fig. 1
gives an overview of our approach.

In order to train such a model, however, training data
is required that contains ground truth about the geometry
and semantics in occluded areas. While several synthetic
datasets exist where full 3D information can be extracted [27,
20], no dataset with real images exists that provides such
ground truth. In this work, we demonstrate how to process
the ScanNet dataset [1] such that approximate but reliable
ground truth for the problem of occlusion reasoning can be
generated, which we will make publicly available.1

While we follow the standard evaluation proposed in
Plane-RCNN [10], average precision (AP), for the visible
part of planes, we found that it does not well capture the
impact of predictions in the hidden part. For this reason,
we propose a novel metric, average precision hidden (APH),
which is specifically designed for occluded areas and de-
scribed in Sec. 3.3.

Our results on the ScanNet dataset with our newly gener-
ated annotations show that each component of our approach
aids in better occlusion reasoning. Our model is competitive
with Plane-RCNN [10] for foreground areas and outperforms
strong baselines in occluded areas, see Sec. 4.

To summarize, our contributions are:
• Extend Plane-RCNN [10] to predict the occluded part of

planes in indoor scenes
• A novel network architecture (DualRPN) and training

objective (plane-warp) specifically designed for the task
of occlusion reasoning.

• Approximate ground truth of semantics and geometry in
occluded areas generated automatically from the ScanNet
dataset.

• An evaluation metric designed to analyze the prediction
quality of occlusions.
1Available at: www.nec-labs.com/˜mas/peekaboo/

2. Related Work

We focus our discussion of related work specifically on
occlusion reasoning in scene understanding.
Depth-ordering: Representing objects in an amodal fash-
ion (e.g., 3d boxes) and assigning them an ordering based
on depth is a simple way to reason about occlusions. For
instance, Yang et al. [26] explore layered representations to
express relative order. Specifically, an image will be decom-
posed into multiple regions and each region is associated
with its semantic class and relative order [21]. The main
problem lies in how to generate high quality semantically
complete and meaningful regions. An exemplar-based detec-
tor is utilized in [21] and other instance-level detection meth-
ods can also be applied when occlusion reasoning happens
among foreground objects. In contrast, our model is more
generic since we work on both object and background/stuff
classes and can be extended to unseen classes. Moreover, our
representation is more complete since we provide absolute
depth rather than just relative order.
Layout estimation: Many prior works have tried to esti-
mate the layout of a scene, both for outdoor [5, 9, 24] as
well as indoors [7, 8, 23]. The layout is typically described
by a parametric model, e.g., a cube for indoor rooms [8]
or by more complex attributes for outdoor scenes [5, 24].
All these works naturally address occlusion reasoning since
most scenes also contain foreground objects that occlude
the scene layout. In contrast, our work addresses both fore-
ground objects and the scene layout simultaneously.
Explicit representations for occlusion reasoning: An-
other direction that addresses the occlusion reasoning prob-
lem more directly is via predicting multiple depth and/or
semantic segmentation maps. Many works have been pro-
posed for completing depth with RGB-D input, including
ones that employ optimization of the Mumford-Shah func-
tional [12], background surface extrapolation [14] or deep-
learning based inpainting [17]. Similar works [3, 22] rely
on Layer Depth Images (LDI) by Shade et al. [18]. While
these methods separate foreground and background with two
distinct depth maps (and segmentation maps), multiple oc-
clusions of foreground objects are not representable. Most
recently, Dhamo et al. [2], successfully addressed this issue
by combining LDIs with the concept of object detection
frameworks [16]. One limitation of [2] is that the definition
of foreground objects is bound by the availability of object
detection datasets, whereas our proposed approach is more
generic and can generalize to arbitrary objects in a scene.
Plane-based representations: Planes are an alternative
representation of scenes, which have shown to be promis-
ing [10, 11, 25] due to their compactness and flexibility.
Essentially, each plane in the scene can be described by
a normal vector and an offset along with a mask that out-
lines the extent of the plane. Both [11] and [25] reconstruct
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Figure 2: An illustration of our plane representation: (a)
complete layout masks (b) visible layout masks (c) complete
object masks (d) visible object masks. Separately showing
layout and object planes is for better visualization.

scenes as piecewise planar depthmap from a single RGB
image but are limited by the need to define a maximum num-
ber of planes. Very recently, Liu et al. [10] have proposed
Plane-RCNN, which is a deep-learning based model to pre-
dict a full scene description based on planes. Similar to [2],
Plane-RCNN leverages an object detection framework [16]
to predict an arbitrary number of planes. In this work, we
extend Plane-RCNN to explicitly do occlusion reasoning
with a plane representation, which are very suitable since
planes naturally extend to occluded areas.

3. Our Approach

In this section, we introduce our proposed approach for
occlusion reasoning and discuss four main aspects. First, we
introduce in Sec. 3.1 our procedure for generating ground
truth from the ScanNet dataset [1] that is required to train
our occlusion-reasoning model. We also discuss in that sec-
tion the plane-based representation that we build our model
upon. Given the plane representation, we then introduce
our main contributions in Sec. 3.2: A two-branch category-
specific module for predicting planes, the corresponding
fusion scheme for objects and scene layout, and a novel train-
ing objective based on plane warping. Finally, in Sec. 3.3,
we propose a novel metric to evaluate occlusion-reasoning
specifically for occluded areas.

3.1. Data generation and plane representation

Our dataset is built based on the RGB-D videos in
ScanNet [1]. We first convert the mesh of the room into
a set of multiple planes following the steps described in
PlaneNet [11]. In our work, we describe each plane with a
normal vector, an offset and two masks: one for the visible
part of the plane and one to outline the full extent of a plane
even if occluded by other objects. We denote these two
types of masks as “visible mask” and “complete mask”. The
normal vector indicates the direction of the plane, the offset
defines the closest distance from the camera to the plane, and
the masks indicate the size and shape of the plane (visible
and complete, respectively). Fig. 2 illustrates this plane rep-
resentation. For a full representation of the scene, we also
use (and predict) a depthmap for areas that are not covered
by any plane. To finally generate the data for every single

(a) (b) (c) (d)

Figure 3: Complete masks for ground truth generation before
(b) and after (c) applying the proposed filling method for
image in (a). We can observe that after the proposed filling
method, we are able to have a better complete mask for floor
(blue area). (d) highlights the filled regions. White area is
the original complete mask without filling. Red area shows
the filled area, where pixel value is set to -1.

view of the scene, we utilize the camera parameters to com-
pute the parameters and masks (both visible and complete)
of our plane representation.

However, due to the camera views as well as the noisy
meshes [2], there can be holes in the complete masks for
occluded areas. This would lead to a wrong training signal
for our prediction network since the holes are merely artifacts
of the data generation process. Observing that complete
planes like the wall, the floor or the top of a table are, in
most cases, of convex shape while holes generally occur
inside the full planes, we propose to fill the complete masks
to be the convex closure. However, since we cannot be
sure that each hole is actually surrounded by a mask that
corresponds to the same plane, assignment to masks becomes
ambiguous and can potentially lead to wrong training signals.
We thus choose to flag those filled areas as “ignore” (-1),
meaning they have no influence during training our model.
Fig. 3 shows comparisons of full masks before and after
filling. Note that the filled floor is set as “ignore” (red area)
in Fig. 3d. We also report quantitative results of with and
without the filling step later in our experiments (see Sec. 4
for more details.)

3.2. Occlusion-aware plane detection network

Our occlusion-aware plane detection network follows the
design of PlaneRCNN [10], which we briefly review in the
following paragraph before introducing our proposed model.
Plane-RCNN [10]: The main architecture of PlaneR-
CNN [10] follows the design of Mask R-CNN [6]. Specif-
ically, it detects planes by first depicting their enclosing
bounding boxes (bbox). Then it predicts the normal and
binary mask for each individual plane, indicating the cor-
responding orientation as well as the visible region of this
plane. Meanwhile, there is a depth branch that uses the
global feature map to predict per-pixel depth values. Given
the per-pixel depth and the plane (normal and visible mask)
predictions, it further estimates the offset of each plane. Note
that in the original paper of [10], the authors also propose
to add one more mask prediction module for inferring the
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Figure 5: The detailed flowchart of our DualRPN module.
complete mask to handle the occlusion reasoning. Although
no quantitative results are provided, we implement their pro-
posal and take this as one of our baselines, which we denote
as PlaneRCNN-OR.

DualRPN: With the introduction of both visible and com-
plete masks, the variation in shape, size and distribution
of planes belonging to different categories becomes larger
than only looking at visible masks as in PlaneRCNN [10].
A good example for this are categories like floor and wall,
where large differences can be observed compared to typical
foreground categories, but also between visible and com-

plete masks of the same plane. To this end, we propose to
handle background and foreground separately. Specifically,
we divide our classes into two, foreground and background,
and propose a category-specific network, which is referred
to as DualRPN in this paper. Compared to the baseline
(PlaneRCNN-OR), we aim to learn different priors for differ-
ent categories by employing separate RPNs with independent
mask prediction modules. As can be viewed in Fig. 4, we
have one object and one layout branch, for foreground and
background categories, respectively. The object branch is
trained with the object plane ground truth and vice versa. In
this way, we are able to handle and learn different priors for
both categories without adding too many parameters. Ide-
ally, given a single image, the layout branch predicts only the
masks for background classes, e.g. walls and floors, while
the object branch focuses only on foreground classes and
ignores others. The detailed flowchart is shown in Fig. 5.
Note that we also tried splitting at later stages in the network
architecture, however, it did not provide comparably good
results.

Semantic merging: The results of DualRPN are two sets
of predicted planes from object and layout branches, respec-
tively. In order to obtain the final representation for the entire
image, we should fuse the predictions from both. To achieve
that, one naive way is to take the union of the two sets and
use the full predictions as the final results. However, this
would lead to duplicated results. For instance, one region
can get predictions both from object and layout branch by
mistake since both of them believe this region should be
represented by their own category. To address this problem,



one can apply non-maxima suppression (NMS) over the full
predictions. However, this simple NMS-based fusion can
lead to over-suppressing of planes. Fig. 9 gives an example.
If we directly apply NMS between predictions from object
and layout branch, we will suppress the plane for the table.
This is due to the heavy occlusion between table and floor
boxes and NMS would only keep one of them in this case.
This type of problem is even more severe for our task since
heavy occlusions happen frequently.

To this end, we propose a novel fusion method and denote
it as Semantic Merging. We firstly apply NMS separately on
each branch’s output planes. Then, we feed the suppressed
results from the two branches to our semantic merging mod-
ule. This module then utilizes semantic segmentation results
as reference to effectively fuse the results from both branches
(see Fig. 4). Specifically, we can check the overlap between
visible masks from object and layout branches. For those
pairs whose overlapping score is greater than the pre-defined
threshold ✓, we further turn to the semantic segmentation
results to help determine which of the planes to keep. For
these paired visible masks, we compute their confidence
scores based on their overlapping score w.r.t. semantic seg-
mentation and leave the one that has higher confidence score
in our final predictions. The overlapping score of the layout
class can be computed by counting the percentage of pixels
that are inside the layout visible mask and belong to a layout
class in the segmentation map and vice versa. In practice,
we use an off-the-shelf semantic segmentation network [15]
to predict the per-pixel semantic segmentation map and set
the threshold ✓ to 0.3. More detailed algorithm can be found
in supplementary material.
Plane warping module: We now introduce a novel train-
ing objective specifically designed for our plane represen-
tation that leverages the availability of multiple views of
the same scene in the training dataset. The loss tries to en-
courage consistency between planes across different views,
which is useful since many planes are likely only occluded
in one view, but visible from another one. Different from
the warping loss introduced in [10], our warping loss can
enforce consistency also in hidden regions.

Given the camera transformation between two views, we
warp each predicted plane Pi. First, the plane normals and
offsets are projected by the camera rotation and translation.
With this information, we can then further project the mask
of the predicted plane Pi to the other view via bilinear in-
terpolation. We denote the warped plane as Pwi . Then, we
match each warped prediction Pwi with ground truth planes
Pgj , which can be formalized as

max
i,j

IoU(Pgi , Pwj ) , (1)

subject to

Dn(Pgi , Pwj )  ⌘depth ^ IoU(Pgi , Pwj ) � ⌘iou , (2)

with

Dn(Pgi , Pwj ) =
���NPgi

· ogi �NPwj
· owj

���
2
. (3)

where IoU(·) calculates the intersection-over-union overlap
between two planes and NP and o indicate the normal and
offset of a plane. The two thresholds ⌘depth and ⌘iou are
hyper-parameters which are set to 0.5 and 0.3, respectively
for all experiments. Finally, the loss is calculated as the
cross entropy between the warped mask prediction and the
matched neighbor ground truth mask, which provides an
additional training signal and improves our results as we
empirically demonstrate in Sec. 4. A more detailed algorithm
can be found in the supplementary material.

3.3. Metric for occluded regions

To measure the performance of plane predictions, Liu et
al. [10] propose to utilize Average Precision (AP), as in
instance segmentation [6], but with an additional depth con-
straint. The metric AP0.4 only counts predicted masks as
correct if the intersection-over-union (IoU) between pre-
dicted and ground-truth masks is greater than 0.5 and the
average pixel-level depth difference for these two planes
is within 0.4 meter. However, directly applying this eval-
uation metric for our task is not desired. The main reason
is that this evaluation metric never explicitly measures the
performance on hidden regions, but only considers the com-
plete region as a whole. Since it often happens that the
area of a visible region is far larger than that of the corre-
sponding hidden/invisible region, a model can still have a
very high AP0.4 value even if it predicts the visible region
well and sacrifices the hidden one. To this end, we pro-
pose a novel evaluation metric, termed Average Precision
Hidden (APH), which complements AP0.4 specifically for
occlusion-reasoning. For calculating APH, the Fully Visible
planes {P FV

g
} and their corresponding estimations {P FV

e
}

need first to be removed. For the jth plane Pgj , it belongs
to {P FV

g
} as long as its hidden mask Area(GHj ) < area.

Here GHj is visible mask of Pgj . For the ith plane Pei , it
belongs to {P FV

e
} as long as the output j of Equ. 4 satisfies

Pgj 2 {P FV
g

}.

argmax
j
IoU(Mi, Gj) (4)

where Mi is the complete mask of the i-th plane esti-
mation Pei , Gj is the complete mask of the j-th ground
truth Pgj . A predicted plane must satisfy the following three
criteria to be considered as true positive:

IoU(Mi \GVj , GHj ) � iou (5a)

D(Pei , Pgj )  depth , (5b)

Pgj /2 {P FV
g

}, Pei /2 {P FV
e

} , (5c)



Figure 6: Data filling: The first column are input images.
Columns two and three show the Origin and Refined com-
plete mask of layout class, respectively. Columns four and
five show the Origin and Refined complete mask of object.

where GVj is visible part of the complete mask Gj . The
function D(·) calculates the depth difference. area, iou and
depth are thresholds that we set as area = 100 pixel, iou =
0.5 for all experiments and depth = [0.4m, 0.6m, 0.9m] for
the three instantiation of the metric: [AP0.4, AP0.6, AP0.9].
By excluding visible region from the ground truth, this met-
ric focuses only on predictions in hidden regions and it can-
not be cheated by improving predicting the visible planes.
Jointly with AP on the complete masks, we now have a better
and more comprehensive understanding of the performance
of our occlusion reasoning method.

4. Experiments

4.1. Experimental setup

Dataset: Our dataset is built on the large-scale RGB-D
video dataset ScanNet[1]. It consists of 2.5 million views
in more than 1500 room scans. The annotation includes
3D camera poses, 3D room reconstructions and semantic
information. We follow [10] for assigning each scene to
training, validation and testing. Then we uniformly sample
each split and finally obtain 100k, 1k and 1k images for
training, evaluation and testing. To obtain the ground-truth
for object and layout categories, we first project the semantic
label of each plane to the NYU40 classes. Afterwards, ‘wall’,
‘ceiling’, ‘floor’ and ‘window’ are categorized as layout.
Others belong to the ‘object’ category.

Implementation details: We implement our network
with PyTorch. The pre-trained weights of PlaneRCNN [10]
are employed for initializing our model. Our models are
trained on an NVIDIA 1080 Ti GPU for 100k iterations with
batch size set to 1. Following the setting of PlaneRCNN,
input images are scaled to 640⇥480 and then padded with
zero values to be 640⇥640. The learning rate is set as 1e-4
when we start the training process and it decays to [5e-5,
2e-5, 1e-5] at [5k, 10k, 15k] iterations.

Baselines: We choose the modification of PlaneR-
CNN [10] for occlusion reasoning as the main baseline for
validating the effectiveness of the proposed method. And we
denote it as PlaneRCNN-OR (We refer the readers to Sec. 3.2
for more details). Please note that the original PlaneRCNN-
OR is proposed in [10] to address the occlusion problem for

indoor scenes. Since code for this version is not released,
we implement ourselves based on [10]. Moreover, to have a
fair comparison, we re-train this model on our dataset where
visible and complete masks are generated and report the
numbers.

Metric: We evaluate both the plane prediction and depth
prediction tasks. As for complete plane prediction, we fol-
low [11] and use AP with different depth constrains to mea-
sure the performance. As for performance measurement on
hidden regions, we employ the APH introduced in Sec. 3.3.
We further employ the following two metrics for depth mea-
surement:

• Root Mean Squared Error(RMSE):
q

1
T

P
(di � gi)2

• Threshold accuracy: Percentage of di, such that
max(di

gi
, gi

di
) < �

T stands for the number of pixels in the image, di and gi
indicate the depth value of pixel i in depth and ground truth
image. We adopt threshold accuracy with � = [1.25, 1.252,
1.253] for Acc1, Acc2 and Acc3 respectively.

4.2. Evaluations on data generation

As can be seen in Tab. 2, evaluating model on the “Refine”
dataset always gives better results, especially for hidden
regions. This is mainly due to the fact that without hole
filling, the networks are required to learn to predict those
arbitrary holes in the masks (see the highlighted region in
Fig. 6), which can be very challenging. Another observation
is that models trained with the “Refine” dataset gives a better
performance w.r.t. that trained on “Origin”. Again, this is
mainly because that with the “Refine” dataset, the network
is more likely to learn something from meaningful complete
masks, especially for hidden regions. While if the network
is trained on “Origin”, it is harder for this network to learn
to predict masks due to these noises/holes.

4.3. DualRPN with semantic merging

DualRPN helps hidden mask prediction Employing
DualRPN enables our model to learn category-specific prior
knowledge. As shown in Fig. 9b, the baseline method is only
able to extend the visible region of floor by a small margin.
After introducing DualRPN, we can observe that a larger
hidden region of the floor can be predicted in Fig. 9c. We
demonstrate quantitative results in Tab. 1, where we can ob-
serve the proposed DualRPN greatly improving APH whiel
not harming AP. As we described in Sec. 3.2, this behaviour
is largely due to the over-suppressing of NMS. We report
below the effectiveness of our proposed fusion module.

Semantic merging surpasses NMS We now demon-
strate the superiority of the proposed semantic merging mod-
ule over NMS. Qualitative results are shown in Fig. 9c, where
the table is suppressed by NMS due to its heavy overlapping
w.r.t. the floor. Our proposed module is able to solve this



Figure 7: Visualization of proposed method, The first column is the input image. The second column and third column show
the complete plane prediction from layout branch and that from object branch respectively. The fourth column demonstrates
visible planes and the last column is the novel view synthesis. As can be viewed in our examples, the proposed method is able
to predict both visible and complete area from single image, which provides a better representation for indoor scenes.

problem (see examples in Fig. 9d). We also report quan-
titative results in Tab. 1. Specifically, Semantic Merging
improves AP values by [1.6%, 1.8%, 1.9%] compared to
NMS. Combining DualRPN with the Semantic Merging,
we further pushes APH by [2.9%, 2.9%, 2.6%] and AP by
[1.2%, 1.1%, 0.9%].

DualRPN with semantic merging helps depth predic-

tion We further demonstrate that DualRPN benefits the depth
prediction. Specifically, we convert the output plane repre-
sentation to a depth map and report the depth prediction per-
formance on visible areas.As shown in Tab. 3, PlaneRCNN-
OR improves Acc1 by 1% and our proposed method further

boosts both RMSE and Acc1 by 2%. Our results prove
that occlusion reasoning and 3D understanding are mutually
beneficial.

4.4. Plane warping module

By enforcing the consistency with neighboring views, our
proposed plane warping module helps to improve precision
on predicting the complete mask on both visible and hidden
regions. As shown in Tab. 1, our proposed method improves
AP 0.9 and APH 0.9 by 1% and 0.4%, respectively.

We qualitatively compare our model with PlaneRCNN-
OR [10] in Fig. 8, where our model almost always performs



Figure 8: Qualitatively comparison of our method with PlaneRCNN-OR. For each sample, Left: The input image. Right: From
top to bottom - ground truth, baseline prediction, proposed method prediction for visible and complete masks.

Table 1: Ablation study of proposed methods: Dual RPN, Semantic Merging, Channel-wise Attention Module and Occlusion-
aware Warping Module. The first row without any proposed modules denotes the PlaneRCNN-OR [10]. The adopted metrics
are AP and APH under iou set as 0.5 and depth set as [0.4m, 0.6m, 0.9m]. A relative improment of 42.65% on APH0.4 is
achieved by comparing 0.068 (baseline) with 0.097 (our result).

Dual RPN Semantic
Merging

Plane Warping AP 0.4 AP 0.6 AP 0.9 APH 0.4 APH 0.6 APH 0.9

0.319 0.364 0.386 0.068 0.080 0.088

X 0.315 0.357 0.376 0.092 0.104 0.109
X X 0.331 0.375 0.395 0.097 0.109 0.114
X X X 0.334 0.382 0.405 0.097 0.111 0.118

Table 2: Evaluation of PlaneRCNN-OR [10] when training
and testing on different datasets with [AP0.4, AP0.6, AP0.9]
and [APH0.4, APH0.6, APH0.9]

Testing set Origin Refine

Training set Origin Refine Origin Refine

AP 0.4 0.284 0.284 0.314 0.327

AP 0.6 0.316 0.319 0.352 0.371

AP 0.9 0.334 0.338 0.374 0.395

APH 0.4 0.007 0.019 0.030 0.068

APH 0.6 0.009 0.021 0.035 0.080

APH 0.9 0.012 0.023 0.040 0.088

(a) (b) (c) (d)

Figure 9: Qualitative results for PlaneRCNN-OR [10] w/
or w/o DualRPN: (a) input image (b) w/o DualRPN (c) w/
DualRPN (d) w/ DualRPN and Semantic Merging.

Table 3: Results for depth prediction.

Method RMSE# Acc1" Acc2" Acc3"

PlaneRCNN[10] 0.34 0.78 0.95 0.99
PlaneRCNN-OR[10] 0.34 0.79 0.95 0.99
DualRPN 0.32 0.81 0.95 0.99

better in terms of complete mask prediction.

5. Conclusion

This paper proposes to address the occlusion reasoning
problem in indoor scenes with efficient plane representations.
We firstly generate a dataset where the ground-truth of our
occlusion-aware representations are available. Our proposed
model separates the prediction for foreground and layout
planes for a more effective mask prediction in hidden regions.
When multiple views are available at train time, a novel plane
warping loss is also introduced to handle occlusion scenarios.
Finally, we propose a novel evaluation metric for measuring
the performance specifically on hidden regions. Compared
to existing methods, our proposed method achieves large
relative improvements in hidden regions.
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