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Abstract

An exact method of correcting the rolling shutter (RS)

effect requires recovering the underlying geometry, i.e. the

scene structures and the camera motions between scanlines

or between views. However, the multiple-view geometry

for RS cameras is much more complicated than its global

shutter (GS) counterpart, with various degeneracies. In this

paper, we first make a theoretical contribution by showing

that RS two-view geometry is degenerate in the case of pure

translational camera motion. In view of the complex RS

geometry, we then propose a Convolutional Neural Network

(CNN)-based method which learns the underlying geome-

try (camera motion and scene structure) from just a single

RS image and perform RS image correction. We call our

method structure-and-motion-aware RS correction because

it reasons about the concealed motions between the scan-

lines as well as the scene structure. Our method learns from

a large-scale dataset synthesized in a geometrically mean-

ingful way where the RS effect is generated in a manner

consistent with the camera motion and scene structure. In

extensive experiments, our method achieves superior perfor-

mance compared to other state-of-the-art methods for single

image RS correction and subsequent Structure from Motion

(SfM) applications.

1. Introduction

Many consumer cameras such as webcams or mobile

phones employ CMOS sensors due to their cost advantage.

However, they come with the limitation of operating on a

rolling shutter (RS) mechanism. In contrast to global shutter

(GS), which exposes all rows of the sensor array at the same

time, RS exposes them on a row-by-row basis from top to

bottom with a constant time delay between consecutive rows.

In the presence of camera motion during image capture, the

delay between the exposure of the first row and last row can

cause significant distortions in the captured image, resulting

in deviation from the pinhole camera model [16].

Being a pure geometric distortion, the RS effect can be

corrected rigorously by recovering the underlying geometry
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Figure 1. Overview of our approach. From a set of GS images and

corresponding GS depth maps, we generate synthetic RS images

with corresponding RS camera motions and RS depth maps for

training our network. At testing, given a single real RS image, our

network predicts an accurate RS camera motion and RS depth map,

which are used for correcting RS effects in the input image.

(i.e. camera motion and 3D structure). However, due to the

extra unknown parameters arising from the changes in the

per-scanline camera poses during the exposure period, the ge-

ometric problem for RS cameras is often more complicated

than its GS counterpart [3, 8, 18]. In particular, two-view ge-

ometry of RS cameras requires 44 2D point correspondences

to get a linear solution [8], making it generally intractable

in practice. Thus, method that uses two-view geometry to

remove the RS effect has to impose special constraints, e.g.

assuming differential camera motions and require non-trivial

readout calibration [43].

Our first contribution in this work is a geometric degener-

acy analysis in RS cameras. Note that despite the widespread

deployment of RS cameras in many real-world applications,

analyses on potential degeneracies have only emerged re-

cently [4, 21]. In this paper, we show that RS two-view

geometry is degenerate in cases of pure translational camera

motion. In particular, there are infinitely many combinations

of per-scanline camera poses and scene structures that can

explain the 2D points in both views exactly in terms of repro-

jection errors. Such degeneracy poses additional challenges

in applying two-view RS geometry for rectification, due to

the prevalence of pure translation in practical applications,

e.g., driving scenarios [13, 10].

Given such challenges using pure geometric method and
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considering the recent successes of deep learning in geomet-

ric problems [7, 40, 26, 12], our second contribution is a

data-driven approach to RS correction. Specifically, using a

CNN-based approach, we learn to predict both the camera

scanline velocity and depth from a single RS image. Al-

though single-view depth prediction has been intensively

studied [11, 27], the case of camera velocity between scan-

lines has not been addressed. Despite its ill-posedness at first

glance, we show that it is feasible to estimate these camera

motions from the distortion in the image appearance. The un-

derlying intuition is that the appearance distortion represents

the violation of the rigidity between all the scanlines and

scene caused by camera motion during the exposure period.

If enough has been learnt about the true geometry of the

scene and its objects, this knowledge can be used to recog-

nize the deformation caused by the RS distortion, following

which camera motion recovery should be possible. The

geometry so obtained can be used for image undistortion.

Our next contribution is a method to synthesize RS im-

ages from their GS counterparts in a geometrically faithful

way, given the ground truth velocity and depth. This is used

to generate large-scale training data. Finally, we also iden-

tify a further ambiguity that exists between pitch rotation

and the image resizing operation during network training.

Fig. 1 provides an overview of our approach. We denote

our method as “SMARSC” short for Structure-And-Motion-

Aware Rolling Shutter Correction, since it reasons about the

scene structures and the latent motions between scanlines.

The first attempt to use CNNs for single-view RS correc-

tion is presented in Rengarajan et al. [31]. However, there are

significant differences between their work and ours. Their

approach only aims at rectified images with visually appeal-

ing appearances; thus only per-scanline 2D deformation is

modeled. Specifically, they apply a camera motion with only

2 degrees of freedom (DOF). For each pixel (on a scanline),

RS effects are restricted to a within-scanline translation and

an in-plane rotation. Further, depth information is not in-

cluded in training. In contrast, our method explicitly takes

into account both camera motions and scene structures and

hence is able to produce rectified images that are not only

visually pleasant but also geometrically consistent.

In summary, our contributions include:

• We identify and establish a detailed proof that RS two-

view geometry is degenerate under pure translation.

This result is important for understanding the intrinsic

and algorithm-independent properties of RS two-view

geometry estimation [8, 43].

• For single-view RS correction, we propose a novel

CNN-based approach that is strongly governed by the

underlying geometry, achieving good performance.

• We propose a geometrically meaningful way to synthe-

size large-scale training data and identify a geometric

ambiguity that arises for training.

2. Related Work

Rolling Shutter Geometry. Many works studying the ge-

ometry of RS cameras emerge in recent years [18, 33, 3, 8,

43, 25]. Recently, Albl et al. [4] discuss a degeneracy that

pitch rotation and parallel readout direction in two or more

views may collapse the reconstructed scene into a plane.

Critical motion sequences of RS cameras under a constant

angular velocity are discussed in [21]. In this work, we

present another degenerate scenario in RS two-view geom-

etry under a pure translational camera motion. A similar

result is discussed in [2] for a stereo rig . However, unlike

[2] which provides only an intuitive discussion, we offer a

formal proof that explicitly delineates the scope and impact

of the degeneracy. For example, our proof makes it clear

that camera velocity and image/scanline exposure can be dif-

ferent in the two views, while such freedom is not typically

assumed for a stereo rig in [2].

Multiple-View RS Correction. Multiple-view methods of-

ten explore RS multiple-view geometry (via sparse/dense cor-

respondences between the images) to correct RS effects [15]

and simultaneously recover scene structures [43, 37]. They

are able to handle different camera motions or scene

structures. However, they require two or more input im-

ages [15, 43, 37] or non-trivial readout calibration [43, 37].

Single-View RS Correction. Single-view RS correction

is inherently an ill-posed problem. To make it tractable,

single-view methods assume simplified camera motions, e.g.

pure rotation [32, 30, 24] or special scene structures, e.g.

Manhattan world [30]. Thus, they cannot work well when

the underlying assumptions on camera motions and scene

structures do not hold. Further, many of them [32, 30, 24]

rely on hand-crafted line/curves features extracted from the

input image, thus they cannot handle images with very few

or wrongly detected lines/curves. In contrast, our method

uses powerful CNN-extracted features and employs a more

general 6-DOF camera motion model and depth information

to tackle various camera motions and scene structures.

3. Degeneracy in RS Two-View Geometry

RS Camera Modeling and Notations. Let us assume each

RS image I has N scanlines in total, denoted as Li with

i = 1, . . . , N , and the camera is intrinsically calibrated.

Since RS cameras capture each scanline sequentially, we

denote the projection matrix for camera pose at the exposure

slot of Li as Pi = [Ri Ti], with Ri ∈ SO(3) and Ti ∈ R
3

being a rotation matrix and a translation vector respectively.

Pure Translation. Suppose that during the exposure period

of two images I1 and I2, the RS camera undergoes pure

translational motion along a constant direction denoted by

a unit-norm vector t = [tX , tY , tZ ]
⊤, and thus Pi of I1

(respectively Pj of I2), defined relative to P1 of I1, can be

expressed as Pi = [I −pit] (respectively Pj = [I −qjt]),
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where pi and qj are scalars determined by the camera motion

magnitude and I represents a 3× 3 identity matrix.

Degeneracy Analysis. Here we only discuss for the case

of tz 6=0 (for tz=0, please see supplementary material). We

first formulate RS two-view geometry for pure translational

camera motion between a pair of scanlines in the two images

in terms of 2D correspondences and depths. Let us consider

two scanlines Li of I1 and Lj of I2 with camera poses Pi

and Pj respectively, and a 3D point S observed in both

scanlines as S1 = [X1, Y1, Z1]
⊤ and S2 = [X2, Y2, Z2]

⊤

in Li’s and Lj’s camera coordinates respectively.

Denoting T
ij = [T ij

X , T ij
Y , T ij

Z ]⊤ = (qj − pi)t, one

can relate S1 and S2 by S2 = S1 − T
ij . Projecting

this relationship into the 2D image, one gets [X2

Z2

, Y2

Z2

]⊤ =

[
X1−T

ij

X

Z1−T
ij

Z

,
Y1−T

ij

Y

Z1−T
ij

Z

]⊤. Subtracting [
T

ij

X

T
ij

Z

,
T

ij

Y

T
ij

Z

]⊤ on both sides

of the above and rearranging, one arrives at

s2 − e =
Z1

Z1 − T ij
Z

(s1 − e), (1)

where e = [
T

ij

X

T
ij

Z

,
T

ij

Y

T
ij

Z

]⊤ = [ tX
tZ

, tY
tZ

]⊤ denotes the epipole,

and s1 and s2 are the 2D projections of S1 and S2 respec-

tively (i.e. s1 and s2 is a 2D correspondence). Since e

remains the same for any pair of scanlines, Eq. (1) indicates

that all 2D points move along 2D lines radiating from the

epipole, as illustrated in Fig. 2(b). This pattern, however, is

exactly the same as in a GS camera model, and is the sole cue

to recognize a pure translational motion, in which case the

epipole is also termed as the focus of expansion (FOE) [16].

Therein lies the ambiguity, and in particular, one can explain

the observed 2D point displacements by a GS camera model,

with the following perturbations to the real T ij
Z and Z1:

• replacing all T ij
Z with a common TZ (recall that T ij =

(qj − pi)t and hence T ij
Z = (qj − pi)tZ . One possible

value of TZ is q1tZ achieved by setting ∀i : pi = 0 and

∀j : qj = q1, as shown in Fig. 2(a)); and,

• distorting the depth Z1 to become Z ′

1
= Tz

T
ij
z

Z1 for each

point S; this value is obtained by solving
Z′

1

Z′

1
−TZ

=
Z1

Z1−T
ij

Z

so that Eq. (1) still holds.

Moreover, even if it is known that the observed 2D point

movements are captured with a RS camera, the per-scanline

camera positions along the translational direction, namely

pi and qj , cannot be determined. Beyond the global scale

ambiguity, there are evidently still infinite number of fake

p′i and q′j that can produce physically possible (i.e. positive)

and yet distorted depth Z ′

1
=

T ij′
z

T
ij
z

Z1 with T ij′
z = (q′j − p′i)t.

Intuitively, in the absence of rotation, RS-induced distor-

tion does not affect the direction of 2D point displacements

but their motion magnitude. A GS two-view Structure from

Motion (SfM) process can still regard it as a pure transla-

tional camera motion (with no RS distortions) by compensat-

ing the RS distortions with an appropriate corruption in the

Camera Translational Direction t

p1t = 0 p2t
pNt q1t

q2t
qNt

1st Image Exposure

G
S

R
S

2nd Image Exposure

1st Image Exposure 2nd Image Exposure
∀i: pit = 0

∀j: qjt = q1t

(a)
s2

s1

e

Starting Image Point (s1)
Ending Image Point (s2)
2D Displacement Vector
Epipolar (e)

(b)

Figure 2. Degeneracy in RS two-view geometry. Both RS and GS

pure translation in (a) produce radiating displacement in the 2D

points in (b). The red/blue lines in (a) stand for scanlines.

depths. In other words, no SfM algorithm can extract the RS

effects from 2D correspondences only under such motion.

Further, even if it is known that a RS camera is being used,

the SfM algorithm is still not able to select the correct camera

positions and depths due to the infinite number of solutions.

Such degeneracy also implies numerical difficulties in SfM

when the amount of rotation is small and there are noises in

image measurements, though such scenario is theoretically

not degenerate.

From the above, we arrive at the following proposition:

Proposition. RS two-view geometry for pure translational

camera motion is degenerate, in the sense that one cannot

tell if the two images are captured with a RS or GS camera

based on 2D correspondences only. Even if the camera is

known to be RS a priori, the per-scanline camera positions

along the translational direction, namely pi and qj , cannot

be determined.

We note that such degeneracy in camera positions along

a line also exists in other SfM problems, e.g. translation

averaging [22, 38, 42] with collinear camera motions.

4. Structure-And-Motion-Aware Rolling Shut-

ter Correction

In this section, we present the details of our network

architecture (Secs. 4.1) and training data generation (4.2) for

single-view RS correction. We also identify an ambiguity

arising during network training (Sec. 4.3).

RS Image → GS Image (Rectification). Our proposed

network takes a single RS image as input and predicts a

corresponding RS camera motion and RS depth map, which

can be used to perform rectification. In particular, for ev-

ery pixel in the RS image, we can first back-project it to a

3D point using the estimated depth and then use the esti-

mated per-scanline camera pose to project the 3D point to

the GS canvas (the plane defined by P1 of the first scanline),

yielding the rectified image. For modeling a RS camera

motion, we employ a 6-DOF motion model and assume

the camera has a constant velocity during the exposure pe-

riod, which is a reasonable assumption and widely used in

many recent works [20, 33, 3, 8, 43, 34]. In particular, we

denote the constant per-scanline translational velocity and

rotational velocity by v ∈ R
3 and w ∈ so(3), and write

Pi = [exp((i− 1)w)⊤ − (i− 1)v].
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Figure 3. Detailed architecture of our structure-and-motion-aware

RS correction network.

4.1. Network Architecture

Our network consists of two sub-networks, namely Depth-

Net and Velocity-Net, for learning a RS depth map and RS

camera motion respectively from a single image. Following

SfMLearner [41], we adopt DispNet [28] as our Depth-Net

for single-view RS depth estimation. For our Velocity-Net,

we adapt the ResNet-34 architecture [17] by removing the

last average pooling layer and adding four 3 × 3 convolu-

tional layers (each followed by a BatchNorm layer and a

ReLU activation layer) for extracting features and one 1× 1
convolutional layer (with no bias) for regressing a 6-DOF

camera velocity, namely a 3D translational velocity vector v

and 3D angular velocity vector w. Fig. 3 shows our network

architecture in detail. We train our Depth-Net by using a

regression loss Ld. We regress inverse depth (instead of

depth) to account for increasing uncertainty with increas-

ing depth. For Velocity-Net, the training losses include

regression losses Lv and Lw for evaluating the estimated

translational and angular velocity respectively, and a photo-

metric loss Lp, which minimizes pixel intensity differences

between the rectified image (obtained with the predicted

camera velocity and the ground truth depth map) and the

corresponding ground truth GS image (pixel intensities are

scaled to [0,1] before computing Lp). Note that we train the

two networks separately, since we rely on synthetic train-

ing data which have ground truth for supervision of each

network. We use L1 norm for all the above losses.

4.2. Training Data Generation

Unlike geometry-based methods, our learning-based ap-

proach requires a large amount of training data, including RS

images with ground truth RS camera velocities and RS depth

maps. Since it is difficult to capture real RS images with

ground truth velocity and per-pixel depth labels, we put forth

a synthetic training data generation pipeline, based on the

KITTI Raw dataset [13] (please see supplementary material

for the list of sequences used for training and testing).

GS Image → RS Image (Distortion). We take the left view

of the stereo pair in KITTI Raw as our ground truth GS im-

age. We first compute the dense GS depth map from stereo

using the state-of-the-art stereo method of [6]. Next, we

generate a 6-DOF camera velocity as our ground truth RS

(a)

(c)

(b)

(d)

Figure 4. Example outputs at various steps in our training data

synthesis: (a) original GS image, (b) GS image transformed by a

homography, (c)(d) interpolated RS image and depth map.

camera motion which gives the per-scanline camera pose

as well. We project each pixel in the GS image to the RS

canvas, yielding the RS image. In particular, since it is not

known which RS scanline the projected pixel will fall on

to, we thus project each pixel sGS (with the corresponding

depth ZGS
s

) using all RS scanlines Li (with the correspond-

ing per-scanline camera pose Pi) and then select the 2D

projection that is nearest to the hypothesized scanline as the

corresponding image point in the RS image. This selection

of scanline (and hence 2D projection) is made via

L∗

i = argmin
Li

‖[Li]y − [ΠPi
(sGS , ZGS

s
)]y‖, (2)

where ΠPi
is the projection function corresponding to the

scanline Li in the RS image and [.]y returns the row index

of a 2D projection or a scanline. Since the above projections

produce a set of image points scattered in between the grid

intersections of the RS image, we perform interpolation to

complete all pixels in the RS image. Note that in the above

projections we get the RS per-pixel depth as well, providing

us with the ground truth for training our Depth-Net. Also,

since the KITTI camera is firmly mounted on the vehicle and

hence has little variation in pitch and roll (yaw varies largely

when the vehicle turns), we apply a small randomly sampled

homography transformation on our ground truth GS image

to increase pitch and roll variation before rendering the RS

image. Fig. 4 shows example outputs at various steps.

We note that since the RS camera often undergoes a small

motion during the short exposure period, the rendering is

generally able to maintain the sharpness in the original GS

image and meanwhile exhibit the desired geometrical distor-

tions in the rendered RS image. Also, due to errors arising

from occlusion boundaries and imperfect stereo depth maps,

the generated images inevitably contain some small artifacts.

However, as we empirically validate in Sec. 5, our network

is able to tolerate them and learn useful information.

4.3. Ambiguity between wxInduced Distortion and
Vertical Image Resizing

The preceding training data generation pipeline returns

training images of different sizes, whereas deep learning

toolboxes require them to have the same size for efficient

computation. To achieve this, one can either crop the images

or resize them. Here, we show that the choice between these
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Figure 5. Resemblance between: (a) undistortion flow required to

compensate the distortion introduced by RS camera rotation wx

and (b) vertical image resizing, confuses network training.

two options matters and opting for resizing can lead to infe-

rior performance. In particular, we show that the distortion

(or the corrseponding undistortion) induced by a small RS

camera rotation around the x-axis, namely wx, is similar to

the changes caused by a vertical image resizing. Thus, resiz-

ing may undo or aggravate the amount of distortion actually

brought about by the wx in the training data, confusing the

network in its learning of the correct camera motion.

Specifically, consider a pixel with coordinates (x, y) in

a scanline Li (corresponding to the pose Pi = [exp((i −
1)[wx, 0, 0]

⊤)⊤ 0]). The undistortion flow that will bring

the RS image back to the GS image plane can be written as

uRS
x = −(i− 1)wx(x−x0)(y−y0)/f

2,

uRS
y = −(i− 1)wx(1 + (y−y0)

2/f2),
(3)

where (x0, y0) and f represent the principle point and fo-

cal length respectively, and we have used the differential

expressions by Horn [19] to approximate the displacement

induced by small motion. Note that this undistortion flow

will be dominated by the linear term −(i − 1)wx in small

to medium field of view. When we perform vertical image

resizing without properly compensating for its effect in the

ground truth camera rotation wx, the camera motion to be

learnt will be confounded. This is because Eq. (3) coincides

with the displacement field induced by vertically resizing

the image by a factor of (1 + wx) (the first row is taken as

the reference row). One example is illustrated in Fig. 5. See

supplementary material for more discussion.

While the readers might be reminded by this phenomenon

of the well-known Bas-Relief ambiguity [1, 5, 9, 36] in the

classical SfM, please note that, unlike Bas-Relief ambiguity,

there is no confounding between wy and horizontal image

resizing here, as the distortion induced by the pose Pi only

depends on the row index i and not the column index.

5. Experiments

Training Details. We use 42 sequences from KITTI

Raw [13] with around 30,000 GS images in total and follow

Sec. 4.2 to generate around 30,000 RS images for training

our network. In particular, we randomly simulate a 6-DOF

camera velocity {v,w} such that the total translation mag-

nitude, i.e. ‖(N − 1)v‖, and total rotation magnitude, i.e.

‖(N − 1)w‖, between the first scanline and last scanline

are between [0,0.1] meters and [0, π
36

] radians respectively,

and render one RS image from each GS image. Following

Sec. 4.3, we crop the rendered images to the same size of

320 × 960 pixels. Our Depth-Net is trained from scratch,

with similar training details as in [41]. For our Velocity-Net,

we use the pre-trained weights of ResNet-34 on ImageNet

classification to initialize the common layers in our network,

whereas the newly added layers are randomly initialized

using [14]. We set the weight of the translational velocity

loss Lv to 0.3, and those of the other losses to 1.0. We use

ADAM [23] with learning rate 0.001. We set batch size to

40 images and implement our network in pyTorch [29].

Competing Methods. For single-view RS correction, we

benchmark our method (SMARSC) against state-of-the-art

methods [31, 30]. To deal with the ill-posedness of single-

view RS rectification, Purkait et al. [30] assume a pure

rotational camera motion and Manhattan world, thus we

term their approach as “MH”. The work by Rengarajan et

al. [31] is the closest to ours, also using CNNs to learn from

a large-scale dataset of synthesized RS images. However,

their approach uses a limited camera motion (within-scanline

translation plus in-plane rotation) and ignores depth, thus

we term their method as “2DCNN”. For a fair comparison,

in synthesizing RS images for training 2DCNN, we rely

on the same set of GS images used in our data generation

pipeline, but employ their data generation code instead. We

tune the motion generation parameters in their code to yield

2D distortions with similar ranges as ours, and render one

RS image from each GS image. We also crop their ren-

dered RS images to the same size as ours and adjust their

fully-connected layers to fit the new input image size.

5.1. Synthetic Data

5.1.1 Image Resizing vs. Image Cropping

To validate the practical significance of the results in

Sec. 4.3, we now demonstrate the advantage of cropping

over resizing as a preprocessing step for obtaining training

images with the same size. In particular, we first train two

versions of our network, one with cropped images and an-

other with resized images. We then generate three image sets

with their camera motions restricted respectively to wx-, wy-,

and wz-rotation only, and evaluate both our trained models

on each image set. Fig. 6 shows the cumulative distribution

function (CDF) of wx, wy, and wz prediction errors (pre-

diction error is based on the total rotation, i.e. (N − 1)wx,

(N − 1)wy, or (N − 1)wz , between the first scanline and

last scanline) for both our models. From the results, it is

evident that our model trained with resized images has much

worse performance in wx prediction (i.e. left red curve) as

compared to its performances in wy and wz prediction (i.e.

middle and right red curves), which implies that the ambigu-

ity between vertical resizing and wx-induced distortion has

indeed reduced the network’s ability to learn wx-induced

distortion. In contrast, our model trained with cropped im-
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Figure 6. Performances of our networks when trained with cropped

images or resized images and tested on image sets with: (a) wx-

rotation only, (b) wy-rotation only, and (c) wz-rotation only.

ages achieves similar performances across wx, wy, and wz

prediction (i.e. blue curves). Moreover, our model trained

with cropped images consistently outperforms our model

trained with resized images across all image sets.

5.1.2 Single-view RS Correction

We randomly select 200 GS images from totally over 5,500

frames of the 2 test sequences on KITTI Raw [13] (with no

overlap with the sequences used for generating the training

data) and follow Sec. 4.2 to synthesize 200 RS images (with

6-DOF camera motions) as our test data. We compare our

method (SMARSC) against MH [30] and 2DCNN [31] for

single-view RS correction. We first show a few qualitative

results to understand the behaviors of the methods intuitively,

and then present quantitative comparisons between the esti-

mated and the ground truth undistortion flow (which maps

pixels in the input RS image to the ground truth GS image).

Qualitative Comparisons. Fig. 7 plots qualitative results

on an input RS image with a typical scene in KITTI Raw.

From the results, it is evident that our method produces

the best rectified image, with our undistortion flow visually

close to the ground truth undistortion flow (e.g. see R2-C3

vs. R1-C3 — “R” and “C” are short for Row and Column

respectively). That is partially due to our accurate predicted

depth map (e.g. see R2-C4 vs. R1-C4). On the other hand,

2DCNN ignores depth information or at least assumes each

scanline has the same depth, and hence it can only rectify

some regions in the image while leaving the other regions

distorted (e.g. in R4-C1, the blue box is rectified relatively

well, whereas the red box still contains notable RS effects).

For MH, its performance depends on the quality of line

detection and vanishing point estimation (i.e. it assumes

Manhattan world) and it does not model camera translation,

which exists in this input image. Both MH and 2DCNN do

not consider scene depths and hence their undistortion flows

do not reflect scene structures (e.g. see R3-C3 and R4-C3).

Please see supplementary material for more results.

Quantitative Comparisons. We now quantitatively evalu-

ate the undistortion flow estimated by each method against

the ground truth undistortion flow. Fig. 8(a) presents the

CDF of undistortion flow errors (flow error is based on the

mean end-point error from each image) in the test set of

200 RS images (with 6-DOF camera motions). Although

2DCNN and MH both rely on limited camera motion mod-

els, 2DCNN slightly outperforms MH, mostly due to MH’s

dependence on hand-crafted features and Manhattan world.

In contrast, our method, which uses a 6-DOF camera motion

model, achieves the best performance on this set.

In some scenarios, the translation of the RS camera can

be negligible compared to the overall depth of the scene or

the camera undergoes pure rotation [30]. We thus render

another test set of 200 RS images with pure rotation and plot

quantitative results on this set in Fig. 8(b). As expected, MH

has slightly better performance than 2DCNN, likely since

MH is particularly designed for pure rotation. Nevertheless,

MH is still inferior to our method, mostly due to MH’s

dependence on hand-crafted features and Manhattan world

assumption. We note that our method is not specifically

trained on RS images with pure rotation but still performs

well in this special case.

Sensitivity to Depth Estimation Accuracy. Here we study

how accurate depth prediction needs to be so that our method

can still benefit from this extra cue as compared to depth-

unaware methods, e.g. 2DCNN. We conduct this experiment

on another set of 200 synthesized RS images with pure trans-

lation (distortion induced by rotation is independent of depth

and is thus excluded). We use our estimated camera motion

(by our Velocity-Net) together with one of the following

sources of depth information to perform rectification: 1)

our estimated depth (by our Depth-Net), 2) “SMARSC-GT-

Depth” — our ground truth depth, and 3) different approxi-

mate versions of 2), i.e. we approximate 2) by quantizing its

continuous depth range into Nb bins and then for each pixel

replacing the continuous depth in 2) by the median depth

of the bin it falls into. We evaluate for Nb = 1, 4, 16, de-

noted as “SMARSC-GT-Depth-Nb-Bins” respectively. We

also compare against 2DCNN (MH is ignored as it does not

model translation). Fig. 8 shows the CDF of undistortion

flow errors (again the mean end-point error from each image)

of all methods on this image set.

From the results, the accuracy of SMARSC-GT-Depth-

Nb-Bins declines with fewer number of bins. However, it

still obtains better results than 2DCNN even with Nb = 1.

This is reasonable, since under pure translation (as illustrated

in Fig. 2(b)), a relatively good translation estimate (or FOE

estimate) by our Velocity-Net will confine the undistortion

flow to its ground truth direction, and hence the accuracy of

depth only affects the magnitude of undistortion flow, lead-

ing to a small decline in the overall performance. In contrast,

such depth-dependent distortion is beyond what the simpler

2D deformation model used in 2DCNN can capture, yielding

the above performance gap. Also, our method (SMARSC),

which relies on both our estimated camera motion and esti-

mated depth, performs similarly to SMARSC-GT-Depth-4-

Bins, which uses our estimated camera motion and merely 4

coarse bins of ground truth depth. This implies that, when

combined with our estimated camera motion, our estimated
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Figure 7. Qualitative comparisons on a synthetic RS image with a typical scene in KITTI Raw. The first row shows the input RS image,

input RS image overlaid on ground truth GS image (pink and green colors indicate the intensity differences), ground truth undistortion flow

(visualized according to [35]), and ground truth depth map (bright and dark colors indicate small and large depth values respectively). The

next three rows plot the results of our method (SMARSC), MH, and 2DCNN respectively with each row showing from left to right the

rectified image, rectified image overlaid on ground truth GS image, estimated undistortion flow, and estimated depth map. Note that since

MH and 2DCNN do not predict depths, we instead show the line detection result for MH and leave an empty figure for 2DCNN.
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Figure 8. Quantitative comparisons on synthetic RS images with:

(a) 6-DOF camera motion and (b) pure rotation.
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Figure 9. Sensitiveness to depth estimation accuracy.

depth is not very precise but it still reaps benefits as far as a

satisfactory rectification is concerned.

5.2. Real Data

We now test on real RS images captured with a Logitech

C920 webcam. The images are resized and cropped to match

the image size and intrinsic parameters of training data. For

the experiments below, we use our model trained entirely on

synthetic data and do not have any fine-tuning with real data.

5.2.1 Single-view RS Correction

As it is difficult to capture real RS images with ground truth

GS images, we conduct qualitative comparisons in this exper-

iment. Fig. 10 shows some qualitative results of our method

(SMARSC), MH, and 2DCNN on real RS images. In gen-

eral, our method achieves the best overall performance. In

particular, we show an evident example of depth-dependent

distortions in I1 with the nearby pole distorted more signif-

icantly than the building in the background. For I1, only

our method is able to rectify both the pole and building

well. Additionally, we plot the undistortion flow (and depth

map) estimated by different methods in Fig. 11, where it

can be seen that our undistortion flow (and our depth map)

reflects scene structures relatively well. For I2, all methods

are able to recognize those conspicuous distortions, e.g. the

distortions of the pole and house highlighted in the red and

green box respectively, however, only our method is able to

correct the subtle distortions in the blue box. This is also

evident in I3. In particular, a careful inspection will reveal

that the car in the red box is actually deformed, and only our

method is able to recover a reasonable shape for the car. Sim-

ilarly, superior performance of our method is observed in I4.

For I5, we observe that MH returns similar results as ours,

due to rich line features in the forms of Manhattan world

and probably rotation-dominated camera motion. Please see

supplementary material for more results.

5.2.2 SfM with RS Images

We demonstrate another potential application of our RS

correction method, which is towards SfM with RS images.

For this purpose, we introduce a two-step approach, which

first applies our RS correction method (SMARSC) on the

input RS images and then employs GS SfM systems (here we

use VisualSFM [39]) on the rectified images. We compare

our two-step approach against similar two-step approaches

which use MH or 2DCNN instead for RS rectification, and

a naive approach which applies VisualSFM directly on the

original RS images. We use an unordered set of 47 RS

images with significant RS distortions collected from the

scene I5 in Fig. 10. Since VisualSFM may return different

results at different runs, we run it 10 times for each method.
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Figure 12. Qualitative results of SfM with RS images in top view.

Four equally-spacing pillars are indicated in the top image.

We observe that, among the 10 runs, our method, the

naive approach, MH, and 2DCNN fail at 0, 4, 7, and 9 runs

respectively. Here, a “failure” means no reasonable structure

that reflects the real scene is reconstructed, e.g. the recovered

structure is collapsed to a plane. From the results, both MH

and 2DCNN break down more often than the naive approach,

likely because they introduce more geometrical distortions

in their rectified images than those existing in the original

RS images. This can mostly be caused by their simplified

motion models. In contrast, our method successfully reduces

RS effects in the original RS images and is thus more robust

than the naive approach. In addition, Fig. 12 shows typi-

cal successful reconstructions by different methods in top

view. We note that the scene in view consists of equally-

spacing pillars, which can be better observed in our result

than in those of the other methods. We attribute this to the

geometrical faithfulness of our RS correction method.

6. Conclusion

In this paper, we identify and discuss a degenerate case

in RS two-view geometry and propose a novel CNN-based

approach for single-view RS correction, which is guided by

the underlying geometrical properties of the problem. Our

method achieves superior performance compared to other

state-of-the-art methods for single-view RS correction on

both synthetic and real data. Our future work will exploit

multiple views and consider other artifacts such as motion

blurs that frequently arise in RS images.
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