60GHz refers to a specific frequency band within the electromagnetic spectrum that is commonly used for high-capacity, short-range wireless communication applications, including WiGig and wireless docking, due to its ability to support high data rates and short wavelengths.

Posts

SkyHAUL: A Self-Organizing Gigabit Network In The Sky

SkyHAUL: A Self-Organizing Gigabit Network In The Sky We design and build SkyHaul, the first large-scale, self-organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mm Wave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth-intensive, latency-sensitive cooperative applications (e.g. LTE coverage during disasters), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line-of-sight distances that limit individual UAVs today.To realize the challenging vision of deploying and maintaining an airborne, mm Wave mesh backhaul that caters to dynamic applications, SkyHaul’s design incorporates various elements: (i) Role-specific UAV operations that simultaneously address application tracking and backhaul connectivity (ii) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (iii)A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We evaluate the performance of SkyHaul through both real-world UAV flight operations as well as large scale simulations.

SkyHaul: An Autonomous Gigabit Network Fabric In The Sky

SkyHaul: An Autonomous Gigabit Network Fabric In The Sky We design and build SKYHAUL, the first large scale, autonomous, self organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mmWave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth intensive, latency sensitive cooperative applications (e.g., LTE coverage during disasters, surveillance during rescue in challenging terrains), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line of sight distances that limit individual UAVs today. To realize the challenging vision of deploying and maintaining an airborne mmWave mesh backhaul to cater to dynamic applications, SKYHAUL’s design incorporates various elements: (1) Role specific UAV operations that simultaneously address application tracking and backhaul connectivity (2) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (3) A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We implement SKYHAUL on four DJI Matrice 600 Pros to demonstrate its practicality and performance through autonomous flight operations, complemented by large scale simulations.