Posts

Deep Federated Anomaly Detection for Multivariate Time Series Data

Deep Federated Anomaly Detection for Multivariate Time Series Data Although many anomaly detection approaches have been developed for multivariate time series data, limited effort has been made in federated settings in which multivariate time series data are heterogeneously distributed among different edge devices while data sharing is prohibited. In this paper, we investigate the problem of federated unsupervised anomaly detection and present a Federated Exemplar-based Deep Neural Network (Fed-ExDNN) to conduct anomaly detection for multivariate time series data on different edge devices. Specifically, we first design an Exemplar-based Deep Neural network (ExDNN) for learning local time series representations based on their compatibility with an exemplar module which consists of hidden parameters learned to capture varieties of normal patterns on each edge device. Next, a constrained clustering mechanism (FedCC) is employed on the centralized server to align and aggregate the parameters of different local exemplar modules to obtain a unified global exemplar module. Finally, the global exemplar module is deployed together with a shared feature encoder to each edge device, and anomaly detection is conducted by examining the compatibility of testing data to the exemplar module. Fed-ExDNN captures local normal time series patterns with ExDNN and aggregates these patterns by FedCC, and thus can handle the heterogeneous data distributed over different edge devices simultaneously. Thoroughly empirical studies on six public datasets show that ExDNN and Fed-ExDNN can outperform state-of-the-art anomaly detection algorithms and federated learning techniques, respectively.

Ordinal Quadruplet: Retrieval of Missing Labels in Ordinal Time Series

Ordinal Quadruplet: Retrieval of Missing Labels in Ordinal Time Series In this paper, we propose an ordered time series classification framework that is robust against missing classes in the training data, i.e., during testing we can prescribe classes that are missing during training. This framework relies on two main components: (1) our newly proposed ordinal quadruplet loss, which forces the model to learn latent representation while preserving the ordinal relation among labels, (2) testing procedure, which utilizes the property of latent representation (order preservation). We conduct experiments based on real world multivariate time series data and show the significant improvement in the prediction of missing labels even with 40% of the classes are missing from training. Compared with the well known triplet loss optimization augmented with interpolation for missing information, in some cases, we nearly double the accuracy.

Anomaly Detection on Web-User Behaviors through Deep Learning

Anomaly Detection on Web-User Behaviors through Deep Learning The modern Internet has witnessed the proliferation of web applications that play a crucial role in the branding process among enterprises. Web applications provide a communication channel between potential customers and business products. However, web applications are also targeted by attackers due to sensitive information stored in these applications. Among web-related attacks, there exists a rising but more stealthy attack where attackers first access a web application on behalf of normal users based on stolen credentials. Then attackers follow a sequence of sophisticated steps to achieve the malicious purpose. Traditional security solutions fail to detect relevant abnormal behaviors once attackers login to the web application. To address this problem, we propose WebLearner, a novel system to detect abnormal web-user behaviors. As we demonstrate in the evaluation, WebLearner has an outstanding performance. In particular, it can effectively detect abnormal user behaviors with over 96% for both precision and recall rates using a reasonably small amount of normal training data.

At the Speed of Sound: Efficient Audio Scene Classification

At the Speed of Sound: Efficient Audio Scene Classification Efficient audio scene classification is essential for smart sensing platforms such as robots, medical monitoring, surveillance, or autonomous vehicles. We propose a retrieval-based scene classification architecture that combines recurrent neural networks and attention to compute embeddings for short audio segments. We train our framework using a custom audio loss function that captures both the relevance of audio segments within a scene and that of sound events within a segment. Using experiments on real audio scenes, we show that we can discriminate audio scenes with high accuracy after listening in for less than a second. This preserves 93% of the detection accuracy obtained after hearing the entire scene.

Deep Unsupervised Binary Coding Networks for Multivariate Time Series Retrieval

Deep Unsupervised Binary Coding Networks for Multivariate Time Series Retrieval Multivariate time series data are becoming increasingly ubiquitous in varies real-world applications such as smart city, power plant monitoring, wearable devices, etc. Given the current time series segment, how to retrieve similar segments within the historical data in an efficient and effective manner is becoming increasingly important. As it can facilitate underlying applications such as system status identification, anomaly detection, etc. Despite the fact that various binary coding techniques can be applied to this task, few of them are specially designed for multivariate time series data in an unsupervised setting. To this end, we present Deep Unsupervised Binary Coding Networks (DUBCNs) to perform multivariate time series retrieval. DUBCNs employ the Long Short-Term Memory (LSTM) encoder-decoder framework to capture the temporal dynamics within the input segment and consist of three key components, i.e., a temporal encoding mechanism to capture the temporal order of different segments within a mini-batch, a clustering loss on the hidden feature space to capture the hidden feature structure, and an adversarial loss based upon Generative Adversarial Networks (GANs) to enhance the generalization capability of the generated binary codes. Thoroughly empirical studies on three public datasets demonstrated that the proposed DUBCNs can outperform state-of-the-art unsupervised binary coding techniques.