Posts

SEED: Sound Event Early Detection via Evidential Uncertainty

SEED: Sound Event Early Detection via Evidential Uncertainty Sound Event Early Detection (SEED) is an essential task in recognizing the acoustic environments and soundscapes. However, most of the existing methods focus on the offline sound event detection, which suffers from the over-confidence issue of early-stage event detection and usually yield unreliable results. To solve the problem, we propose a novel Polyphonic Evidential Neural Network (PENet) to model the evidential uncertainty of the class probability with Beta distribution. Specifically, we use a Beta distribution to model the distribution of class probabilities, and the evidential uncertainty enriches uncertainty representation with evidence information, which plays a central role in reliable prediction. To further improve the event detection performance, we design the backtrack inference method that utilizes both the forward and backward audio features of an ongoing event. Experiments on the DESED database show that the proposed method can simultaneously improve 13.0% and 3.8% in time delay and detection F1 score compared to the state-of-the-art methods.

Fusing the Old with the New: Learning Relative Pose with Geometry-Guided Uncertainty

Fusing the Old with the New: Learning Relative Pose with Geometry-Guided Uncertainty Learning methods for relative camera pose estimation have been developed largely in isolation from classical geometric approaches. The question of how to integrate predictions from deep neural networks (DNNs) and solutions from geometric solvers, such as the 5-point algorithm [37], has as yet remained under-explored. In this paper, we present a novel framework that involves probabilistic fusion between the two families of predictions during network training, with a view to leveraging their complementary benefits in a learnable way. The fusion is achieved by learning the DNN un- certainty under explicit guidance by the geometric uncertainty, thereby learning to take into account the geometric solution in relation to the DNN prediction. Our network features a self-attention graph neural network, which drives the learning by enforcing strong interactions between different correspondences and potentially modeling complex relationships between points. We propose motion parmeterizations suitable for learning and show that our method achieves state-of-the-art performance on the challenging DeMoN [61] and ScanNet [8] datasets. While we focus on relative pose, we envision that our pipeline is broadly applicable for fusing classical geometry and deep learning.

Fusing the Old with the New: Learning Relative Pose with Geometry Guided Uncertainty

Fusing the Old with the New: Learning Relative Pose with Geometry Guided Uncertainty Learning methods for relative camera pose estimation have been developed largely in isolation from classical geometric approaches. The question of how to integrate predictions from deep neural networks (DNNs) and solutions from geometric solvers, such as the 5 point algorithm, has as yet remained under explored. In this paper, we present a novel framework that involves probabilistic fusion between the two families of predictions during network training, with a view to leveraging their complementary benefits in a learnable way. The fusion is achieved by learning the DNN uncertainty under explicit guidance by the geometric uncertainty, thereby learning to take into account the geometric solution in relation to the DNN prediction. Our network features a self attention graph neural network, which drives the learning by enforcing strong interactions between different correspondences and potentially modeling complex relationships between points. We propose motion parmeterizations suitable for learning and show that our method achieves state of the art performance on the challenging DeMoN and ScanNet datasets. While we focus on relative pose, we envision that our pipeline is broadly applicable for fusing classical geometry and deep learning.