Yushan Jiang works at University of Connecticut.

Posts

FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation

Read FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation publication. Imitation learning that replicates experts’ skills via their demonstrations has shown significant success in various decision-making tasks. However, two critical challenges still hinder the deployment of imitation learning techniques in real-world application scenarios. First, existing methods lack the intrinsic interpretability to explicitly explain the underlying rationale of the learned skill and thus making learned policy untrustworthy. Second, due to the scarcity of expert demonstrations from each end user (client), learning a policy based on different data silos is necessary but challenging in privacy-sensitive applications such as finance and healthcare. To this end, we present a privacy-preserved interpretable skill learning framework (FedSkill) that enables global policy learning to incorporate data from different sources and provides explainable interpretations to each local user without violating privacy and data sovereignty. Specifically, our proposed interpretable skill learning model can capture the varying patterns in the trajectories of expert demonstrations, and extract prototypical information as skills that provide implicit guidance for policy learning and explicit explanations in the reasoning process. Moreover, we design a novel aggregation mechanism coupled with the based skill learning model to preserve global information utilization and maintain local interpretability under the federated framework. Thoroughly experiments on three datasets and empirical studies demonstrate that our proposed FedSkill framework not only outperforms state-of-the-art imitation learning methods but also exhibits good interpretability under a federated setting. Our proposed FedSkill framework is the first attempt to bridge the gaps among federated learning, interpretable machine learning, and imitation learning.

Interpretable Skill Learning for Dynamic Treatment Regimes through Imitation

Imitation learning that mimics experts’ skills from their demonstrations has shown great success in discovering dynamic treatment regimes, i.e., the optimal decision rules to treat an individual patient based on related evolving treatment and covariate history. Existing imitation learning methods, however, still lack the capability to interpret the underlying rationales of the learned policy in a faithful way. Moreover, since dynamic treatment regimes for patients often exhibit varying patterns, i.e., symptoms that transit from one to another, the flat policy learned by a vanilla imitation learning method is typically undesired. To this end, we propose an Interpretable Skill Learning (ISL) framework to resolve the aforementioned challenges for dynamic treatment regimes through imitation. The key idea is to model each segment of experts’ demonstrations with a prototype layer and integrate it with the imitation learning layer to enhance the interpretation capability. On one hand, the ISL framework is able to provide interpretable explanations by matching the prototype to exemplar segments during the inference stage, which enables doctors to perform reasoning of the learned demonstrations based on human-understandable patient symptoms and lab results. On the other hand, the obtained skill embedding consisting of prototypes serves as conditional information to the imitation learning layer, which implicitly guides the policy network to provide a more accurate demonstration when the patients’ state switches from one stage to another. Thoroughly empirical studies demonstrate that our proposed ISL technique can achieve better performance than state-of-the-art methods. Moreover, the proposed ISL framework also exhibits good interpretability which cannot be observed in existing methods.