Yue-Kai Huang NEC Labs America

Yue-Kai Huang

Senior Researcher

Optical Networking & Sensing

Posts

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

Model transfer of QoT prediction in optical networks based on artificial neural networks

An artificial neural network (ANN) based transfer learning model is built for quality of transmission (QoT) prediction in optical systems feasible with different modulation formats. Knowledge learned from one optical system can be transferred to a similar optical system by adjusting weights in ANN hidden layers with a few additional training samples, where highly related information from both systems is integrated and redundant information is discarded. Homogeneous and heterogeneous ANN structures are implemented to achieve accurate Q-factor-based QoT prediction with low root-mean-square error. The transfer learning accuracy under different modulation formats, transmission distances, and fiber types is evaluated. Using transfer learning, the number of retraining samples is reduced from 1000 to as low as 20, and the training time is reduced by up to four times.

Neural-Network-Based G-OSNR Estimation of Probabilistic-Shaped 144QAM Channels in DWDM Metro Network Field Trial

A two-stage neural network model is applied on captured PS-144QAM raw data to estimate channel G-OSNR in a metro network field trial. We obtained 0.27dB RMSE with first-stage CNN classifier and second-stage ANN regressions.

First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by Using Fiber Carrying High Speed Data

For the first time, we demonstrate detection of vehicle speed, density, and road conditions using deployed fiber carrying high-speed data transmission, and prove carriers’ large-scale fiber infrastructures can also be used as ubiquitous sensing networks.

41.5-Tb/s Transmission Over 549 km of Field Deployed Fiber Using Throughput Optimized Probabilistic-Shaped 144QAM

We demonstrate high spectral efficiency transmission over 549 km of field-deployed single-mode fiber using probabilistic-shaped 144QAM. We achieved 41.5 Tb/s over the C-band at a spectral efficiency of 9.02 b/s/Hz using 32-Gbaud channels at a channel spacing of 33.33 GHz, and 38.1 Tb/s at a spectral efficiency of 8.28 b/s/Hz using 48-Gbaud channels at a channel spacing of 50 GHz. To the best of our knowledge, these are the highest total capacities and spectral efficiencies reported in a metro field environment using C-band only. In high spectral efficiency transmission, it is necessary to optimize back-to-back performance in order to maximize the link loss margin. Our results are enabled by the joint optimization of constellation shaping and coding overhead to minimize the gap to Shannon’s capacity, transmitter- and receiver-side digital backpropagation, signal clipping optimization, and I/Q imbalance compensation.

Distributed Temperature and Strain Sensing Using Brillouin Optical Time Domain Reflectometry Over a Few Mode Elliptical Core Optical Fiber

We propose a single-ended Brillouin-based sensor in elliptical-core few-mode optical fiber for multi-parameter measurement using spontaneous Brillouin scattering. Distributed sensing of temperature and strain is demonstrated over 0.5 km elliptical-core few-mode fiber.

Optimization of Probabilistic Shaping Enabled Transceivers with Large Constellation Sizes for High Capacity Transmission

We study digital signal processing techniques to optimize the back-to-back performance of large probabilistic shaped constellations. We cover joint optimization of LDPC and constellation shaping, CD pre-compensation, clipping and I/Q imbalance compensation.

Intelligent Filtering-Penalty Monitoring and Mitigation for Cascaded WSSs using Ensemble Learning Algorithm

An ensemble learning algorithm is applied to enhance filtering tolerance of cascaded WSSs in open ROADM environment to demonstrate ~0.8dB Q-factor improvement over MLSE after transmitting over 3200km with 16 ROADMs.

ANN-Based Transfer Learning for QoT Prediction in Real-Time Mixed Line-Rate Systems

Quality of transmission prediction for real-time mixed line-rate systems is realized using artificial neural network based transfer learning with SDN orchestrating. 0.42 dB accuracy is achieved with a 1000 to 20 reduction in training samples.

41.5 Tb/s Data Transport over 549 km of Field Deployed Fiber Using Throughput Optimized Probabilistic-Shaped 144QAM to Support Metro Network Capacity Demands

41.5-Tb/s over 549 km of deployed SSMF in Verizon’s network is achieved using probabilistic-shaped 144QAM to optimize throughput at ultra-fine granularity. This is the highest C-band only capacity and spectral efficiency in metro field environment.