Yue-Kai Huang NEC Labs America

Yue-Kai Huang

Senior Researcher

Optical Networking & Sensing

Posts

First Field Trial of Hybrid Fiber Sensing with Data Transmission Resulting in Enhanced Sensing Sensitivity and Spatial Resolution

Optical fiber cables, initially designed for telecommunications, are increasingly repurposed for environmental monitoring using distributed fiber sensing technologies [1,2]. Distributed acoustic sensing (DAS) based on phase optical time domain reflectometry (?-OTDR) of Rayleigh backscatter enables various applications including traffic monitoring [3], railway [4] and perimeter intrusion detection [5] and cable damage detection [6], etc. The sensing range of DAS is typically limited to several tens of kilometers due to low optical signal-to-noise (OSNR) of the received backscatter. Additionally, compatibility of DAS with existing fiber infrastructure is hindered by the unidirectional operation of inline amplifiers with isolators. An alternative approach based on forward transmission was recently proposed [7, 8], which involves probing an optical fiber with a continuous wave (CW) signal and measuring either changes in received phase or the state of polarization (SOP) to detect cumulative vibration-induced strain. Unlike backscatter measurement, forward transmissions methods have longer sensing range due to higher OSNR, and is compatible with existing telecom infrastructure. However, potential challenges include limited localization accuracy, and low number of simultaneous events that can be discriminated and localized [7]. In this paper, we propose a new concept of “hybrid fiber sensing” for long-haul DWDM networks where the repeater node architecture combines DAS with forward-phase sensing (FPS), enhancing sensitivity by 32%. This approach achieves a multi-span, fine-resolution fiber sensing system. The FPS method detects vibration anomalies and coarsely localizes its position to within a fiber span. A segmented DAS then refines the position estimate and provides a precise waveform measurement. Consequently, the special resolution improves from one fiber span of 80 km to 4 m. Our scheme is validated on a test bed comprising lab spools and field fibers, demonstrating the capability to detect and monitor field construction while simultaneously supporting full C-band 400-Gb/s real-time (RT) data transmission.

Semi-Automatic Line-System Provisioning with Integrated Physical-Parameter-Aware Methodology: Field Verification and Operational Feasibility

We propose methods and architecture to conduct measurements and optimize newly installed optical fiber line systems semi-automatically using integrated physics-aware technologies in a data center interconnection (DCI) transmission scenario. We demonstrate, for the first time, digital longitudinal monitoring (DLM) and optical line system (OLS) physical parameter calibration working together in real-time to extract physical link parameters for transmission performance optimization. Our methodology has the following advantages over traditional design: minimized footprint at the user site, accurate estimate of necessary optical network characteristics via complementary telemetry technologies, and ability to conduct all operation work from remotely. The last feature is crucial as remote operation personnel can implement network design settings for immediate response to quality of transmission (QoT) degradation and reverting in case of unforeseen problems. We successfully completed the semi-automatic line system provisioning over field fiber networks facilities at Duke University, Durham, NC. The tasks of parameter retrieval, equipment setting optimization, and system setup/provisioning were completed within 1 hour. The field operation was supervised by on-duty personnel who can access the system remotely from different timezones. By comparing Q-factor estimates calculated by the extracted link parameters with measured results from 400G transceivers, we confirmed our methodology has a reduction in the QoT prediction errors overexisting design.

NEC Labs America at OFC 2024 San Diego from March 24 – 28

The NEC Labs America team Yaowen Li, Andrea D’Amico, Yue-Kai Huang, Philip Ji, Giacomo Borraccini, Ming-Fang Huang, Ezra Ip, Ting Wang & Yue Tian (Not pictured: Fatih Yaman) has arrived in San Diego, CA for OFC24! Our team will be speaking and presenting throughout the event. Read more for an overview of our participation.

4D Optical Link Tomography: First Field Demonstration of Autonomous Transponder Capable of Distance, Time, Frequency, and Polarization-Resolved Monitoring

We report the first field demonstration of 4D link tomography using a commercial transponder, which offers distance, time, frequency, and polarization-resolved monitoring. This scheme enables autonomous transponders that identify locations of multiple QoT degradation causes.

Inline Fiber Type Identification using In-Service Brillouin Optical Time Domain Analysis

We proposed the use of BOTDA as a monitoring tool to identify fiber types present in deployed hybrid-span fiber cables, to assist in network planning, setting optimal launch powers, and selecting correct modulation formats.

Modeling the Input Power Dependency in Transceiver BER-ONSR for QoT Estimation

We propose a method to estimate the input power dependency of the transceiver BER-OSNR characteristic. Experiments using commercial transceivers show that estimation error in Q-factor is less than 0.2 dB.

Multi-Span Optical Power Spectrum Prediction using ML-based EDFA Models and Cascaded Learning

We implement a cascaded learning framework using component-level EDFA models for optical power spectrum prediction in multi-span networks, achieving a mean absolute error of 0.17 dB across 6 spans and 12 EDFAs with only one-shot measurement.

Optical Line Physical Parameters Calibration in Presence of EDFA Total Power Monitors

A method is proposed in order to improve QoT-E by calibrating the physical model parameters of an optical link post-installation, using only total power monitors integrated into the EDFAs and an OSA at the receiver.

Optical Network Anomaly Detection and Localization Based on Forward Transmission Sensing and Route Optimization

We introduce a novel scheme to detect and localize optical network anomaly using forward transmission sensing, and develop a heuristic algorithm to optimize the route selection. The performance is verified via simulations and network experiments.

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.