Brown University is a prestigious Ivy League institution recognized for its flexible curriculum and interdisciplinary research. With strengths in cognitive science, engineering, and social impact, Brown fosters academic freedom and innovation. NEC Labs America and Brown University investigate neural interfaces, multi-sensor integration, and embodied AI. We collaborate to support innovation in human-machine systems and robotics. Please read about our latest news and collaborative publications with Brown University.

Posts

15 Keypoints Is All You Need

Pose-tracking is an important problem that requires identifying unique human pose-instances and matching them temporally across different frames in a video. However, existing pose-tracking methods are unable to accurately model temporal relationships and require significant computation, often computing the tracks offline. We present an efficient multi-person pose-tracking method, KeyTrack that only relies on keypoint information without using any RGB or optical flow to locate and track human keypoints in real-time. KeyTrack is a top-down approach that learns spatio-temporal pose relationships by modeling the multi-person pose-tracking problem as a novel Pose Entailment task using a Transformer-based architecture. Furthermore, KeyTrack uses a novel, parameter-free, keypoint refinement technique that improves the keypoint estimates used by the Transformers. We achieved state-of-the-art results on PoseTrack’17 and PoseTrack’18 benchmarks while using only a fraction of the computation used by most other methods for computing the tracking information.