Carnegie Mellon University is a global leader in computer science, robotics, and engineering. Its pioneering research in AI, cybersecurity, and human-computer interaction consistently pushes the boundaries of innovation. NEC Labs America partners with Carnegie Mellon University on intent recognition, autonomous systems, and multimodal sensing. We join efforts to advance real-time AI for robotics and human-AI collaboration. Please read about our latest news and collaborative publications with Carnegie Mellon University.

Posts

A Dataset for High-Level 3D Scene Understanding of Complex Road Scenes in the Top-View

We introduce a novel dataset for high-level 3D scene understanding of complex road scenes. Our annotations extend the existing datasets KITTI [5] and nuScenes [1] with semantically and geometrically meaningful attributes like the number of lanes or the existence of, and distance to, intersections, sidewalks and crosswalks. Our attributes are rich enough to build a meaningful representation of the scene in the top-view and provide a tangible interface to the real world for several practical applications.

A Parametric Top-View Representation of Complex Road Scenes

In this paper, we address the problem of inferring the layout of complex road scenes given a single camera as input. To achieve that, we first propose a novel parameterized model of road layouts in a top-view representation, which is not only intuitive for human visualization but also provides an interpretable interface for higher-level decision making. Moreover, the design of our top-view scene model allows for efficient sampling and thus generation of large-scale simulated data, which we leverage to train a deep neural network to infer our scene model’s parameters. Specifically, our proposed training procedure uses supervised domain-adaptation techniques to incorporate both simulated as well as manually annotated data. Finally, we design a Conditional Random Field (CRF) that enforces coherent predictions for a single frame and encourages temporal smoothness among video frames. Experiments on two public data sets show that: (1) Our parametric top-view model is representative enough to describe complex road scenes; (2) The proposed method outperforms baselines trained on manually-annotated or simulated data only, thus getting the best of both; (3) Our CRF is able to generate temporally smoothed while semantically meaningful results.

Learning Gibbs-Regularized Pushforward Density Estimators with a Symmetric KL Objective

We claim that there is currently no satisfactory way to regularize a generative adversarial network (GAN): neither the generator nor discriminator is particularly amenable to the imposition of inductive biases derived from domain knowledge. A generator is effectively a causal model of generation—one that usually bears no resemblance to the true generation process, which is most often unobserved or exceedingly difficult to model. Consider image generation: although it is plausible—e.g., from biological arguments—that convolutional neural networks constitute a good class of image classifiers, claiming CNNs are inherently well-suited to image generation is harder to justify. Likewise, it is clear that regularizing the discriminator is necessary to prevent trivial solutions; although recent methods have seen some success in applying generic smoothness regularizers to the discriminator [1, 5, 12], it is not obvious how to impose domain-specific structure on the discriminator in an optimal way

R2P2: A Reparameterized Pushforward Policy for Diverse, Precise Generative Path Forecasting

We propose a method to forecast a vehicle’s ego-motion as a distribution over spatiotemporal paths, conditioned on features (e.g., from LIDAR and images) embedded in an overhead map. The method learns a policy inducing a distribution over simulated trajectories that is both diverse (produces most paths likely under the data) and precise (mostly produces paths likely under the data). This balance is achieved through minimization of a symmetrized cross-entropy between the distribution and demonstration data. By viewing the simulated-outcome distribution as the pushforward of a simple distribution under a simulation operator, we obtain expressions for the cross-entropy metrics that can be efficiently evaluated and differentiated, enabling stochastic-gradient optimization. We propose concrete policy architectures for this model, discuss our evaluation metrics relative to previously-used metrics, and demonstrate the superiority of our method relative to state-of-the-art methods in both the KITTI dataset and a similar but novel and larger real-world dataset explicitly designed for the vehicle forecasting domain.