Chain of Region is a concept in structured data modeling where linked spatial or temporal regions form sequences for analysis. In NECLA’s research, chain of region methods are used in computer vision, distributed sensing, and network analysis, where segmenting environments into linked regions allows for better pattern recognition. Applications include sequential image interpretation, anomaly detection across geographic areas, and structured inference in large-scale monitoring systems.

Posts

Chain-of-region: Visual Language Models Need Details for Diagram Analysis

Visual Language Models (VLMs) like GPT-4V have broadened the scope of LLM applications, yet they face significant challenges in accurately processing visual details, particularly in scientific diagrams. This paper explores the necessity of meticulous visual detail collection and region decomposition for enhancing the performance of VLMs in scientific diagram analysis. We propose a novel approach that combines traditional computer vision techniques with VLMs to systematically decompose diagrams into discernible visual elements and aggregate essential metadata. Our method employs techniques in OpenCV library to identify and label regions, followed by a refinement process using shape detection and region merging algorithms, which are particularly suited to the structured nature of scientific diagrams. This strategy not only improves the granularity and accuracy of visual information processing but also extends the capabilities of VLMs beyond their current limitations. We validate our approach through a series of experiments that demonstrate enhanced performance in diagram analysis tasks, setting a new standard for integrating visual and language processing in a multimodal context.