Chain of Thought is a reasoning process in which a model generates intermediate steps or explanations as it works through a problem, rather than directly jumping to a final answer. This approach aims to simulate human-like reasoning by breaking down complex tasks into smaller, logical steps that lead to a conclusion.

Posts

Exploring the Role of Reasoning Structures for Constructing Proofs in Multi-Step Natural Language Reasoning with Large Language Models

When performing complex multi-step reasoning tasks, the ability of Large Language Models (LLMs) to derive structured intermediate proof steps is important for ensuring that the models truly perform the desired reasoning and for improving models’ explainability. This paper is centered around a focused study: whether the current state-of-the-art generalist LLMs can leverage the structures in a few examples to better construct the proof structures with in-context learning. Our study specifically focuses on structure-aware demonstration and structure-aware pruning. We demonstrate that they both help improve performance. A detailed analysis is provided to help understand the results.