Inference Scaling is the process of improving AI systems to handle larger workloads or operate more efficiently during prediction. NEC Labs America investigates inference scaling through model compression, distributed inference, and hardware acceleration. These strategies enable large-scale models to run in real time across cloud, edge, and sensing systems. Inference Scaling ensures that AI can be deployed at enterprise scale while remaining cost-efficient and responsive.

Posts

DISC: Dynamic Decomposition Improves LLM Inference Scaling (SSI-FM)

Inference scaling methods often rely on decomposing problems into steps, followed by sampling and selecting the best next steps. However, these steps and their sizes are typically fixed or depend on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically breaks down solution and reasoning traces into manageable steps during inference. By allocating compute more effectively, particularly by subdividing challenging steps and sampling them more frequently, dynamic decomposition significantly enhances inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.

DISC: Dynamic Decomposition Improves LLM Inference Scaling (DL4C)

Inference scaling methods often rely on decomposing problems into steps, followed by sampling and selecting the best next steps. However, these steps and their sizes are typically fixed or depend on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically breaks down solution and reasoning traces into manageable steps during inference. By allocating compute more effectively—particularly by subdividing challenging steps and sampling them more frequently—dynamic decomposition significantly enhances inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.