Microsoft is one of the world’s largest technology companies, providing software, cloud services, and AI tools that empower digital transformation. Its mission is to enable every person and organization to achieve more. NEC Labs America collaborates with Microsoft on scalable federated learning, privacy-enhancing techniques, and multilingual AI systems. We joint research helps make AI more secure, distributed, and inclusive. Please read about our latest news and collaborative publications with Microsoft.

Posts

Multi-Label Temporal Evidential Neural Networks for Early Event Detection

Early event detection aims to detect events even before the event is complete. However, most of the existing methods focus on an event with a single label but fail to be applied to cases with multiple labels. Another non-negligible issue for early event detection is a prediction with overconfidence due to the high vacuity uncertainty that exists in the early time series. It results in an over-confidence estimation and hence unreliable predictions. To this end, technically, we propose a novel framework, Multi-Label Temporal Evidential Neural Network (MTENN), for multi-label uncertainty estimation in temporal data. MTENN is able to quality predictive uncertainty due to the lack of evidence for multi-label classifications at each time stamp based on belief/evidence theory. In addition, we introduce a novel uncertainty estimation head (weighted binomial comultiplication (WBC)) to quantify the fused uncertainty of a sub-sequence for early event detection. We validate the performance of our approach with state-of-the-art techniques on real-world audio datasets.

Hierarchical Metric Learning and Matching for 2D and 3D Geometric Correspondences

Interest point descriptors have fueled progress on almost every problem in computer vision. Recent advances in deep neural networks have enabled task-specific learned descriptors that outperform hand-crafted descriptors on many problems. We demonstrate that commonly used metric learning approaches do not optimally leverage the feature hierarchies learned in a Convolutional Neural Network (CNN), especially when applied to the task of geometric feature matching. While a metric loss applied to the deepest layer of a CNN, is often expected to yield ideal features irrespective of the task, in fact the growing receptive field as well as striding effects cause shallower features to be better at high precision matching tasks. We leverage this insight together with explicit supervision at multiple levels of the feature hierarchy for better regularization, to learn more effective descriptors in the context of geometric matching tasks. Further, we propose to use activation maps at different layers of a CNN, as an effective and principled replacement for the multi-resolution image pyramids often used for matching tasks. We propose concrete CNN architectures employing these ideas and evaluate them on multiple datasets for 2D and 3D geometric matching as well as optical flow, demonstrating state-of-the-art results and generalization across datasets.

illiad: InteLLigent Invariant and Anomaly Detection in Cyber-Physical Systems

Cyber-physical systems (CPSs) are today ubiquitous in urban environments. Such systems now serve as the backbone to numerous critical infrastructure applications, from smart grids to IoT installations. Scalable and seamless operation of such CPSs requires sophisticated tools for monitoring the time series progression of the system, dynamically tracking relationships, and issuing alerts about anomalies to operators. We present an online monitoring system (illiad) that models the state of the CPS as a function of its relationships between constituent components, using a combination of model-based and data-driven strategies. In addition to accurate inference for state estimation and anomaly tracking, illiad also exploits the underlying network structure of the CPS (wired or wireless) for state estimation purposes. We demonstrate the application of illiad to two diverse settings: a wireless sensor motes application and an IEEE 33-bus microgrid.