Ming-Fang Huang NEC Labs America

Ming-Fang Huang

Senior Researcher

Optical Networking & Sensing

Posts

Real-time Intrusion Detection and Impulsive Acoustic Event Classification with Fiber Optic Sensing and Deep Learning Technologies over Telecom Networks

Real-time Intrusion Detection and Impulsive Acoustic Event Classification with Fiber Optic Sensing and Deep Learning Technologies over Telecom Networks We review various use cases of distributed-fiber-optic-sensing and machine-learning technologies that offer advantages to telecom fiber networks on existing fiber infrastructures. Byleveraging an edge-AI platform, perimeter intrusion detection and impulsive acoustic event classification can be performed locally on-the-fly, ensuring real-time detection with low latency.

Explore Benefits of Distributed Fiber Optic Sensing for Optical Network Service Providers

Explore Benefits of Distributed Fiber Optic Sensing for Optical Network Service Providers We review various applications of distributed fiber optic sensing (DFOS) and machine learning (ML) technologies that particularly benefit telecom operators’ fiber networks and businesses. By leveraging relative phase shift of the reflectance of coherent Rayleigh, Brillouin and Raman scattering of light wave, the ambient environmental vibration, acoustic effects, temperature and fiber/cable strain can be detected. Fiber optic sensing technology allows optical fiber to support sensing features in addition to its conventional role to transmit data in telecommunications. DFOS has recently helped telecom operators by adding multiple sensing features and proved feasibility of co-existence of sensing and communication systems on same fiber. We review the architecture of DFOS technique and show examples where optical fiber sensing helps enhance network operation efficiency and create new services for customers on deployed fiber infrastructures, such as determination of cable locations, cable cut prevention, perimeter intrusion detection and networked sensing applications. In addition, edge AI platform allows data processing to be conducted on-the-fly with low latency. Based on discriminative spatial-temporal signatures of different events of interest, real-time processing of the sensing data from the DFOS system provides results of the detection, classification and localization immediately.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency- Diverse Chirped Pulses

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency- Diverse Chirped Pulses We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.

Ambient Noise based Weakly Supervised Manhole Localization Methods over Deployed Fiber Networks

Ambient Noise based Weakly Supervised Manhole Localization Methods over Deployed Fiber Networks We present a manhole localization method based on distributed fiber optic sensing and weakly supervised machine learning techniques. For the first time to our knowledge, ambient environment data is used for underground cable mapping with the promise of enhancing operational efficiency and reducing field work. To effectively accommodate the weak informativeness of ambient data, a selective data sampling scheme and an attention-based deep multiple instance classification model are adopted, which only requires weakly annotated data. The proposed approach is validated on field data collected by a fiber sensing system over multiple existing fiber networks.

Distributed fiber optic sensing over readily available telecom fiber networks

Distributed fiber optic sensing over readily available telecom fiber networks Distributed Fiber Optic Sensing (DFOS) systems rely on measuring and analyzing different properties of the backscattered light of an optical pulse propagating along a fiber cable. DFOS systems can measure temperature, strain, vibrations, or acoustic excitations on the fiber cable and to their unique specifications, they have many applications and advantages over competing technologies. In this talk we will focus on the challenges and applications of DFOS systems using outdoor grade telecom fiber networks instead of standard indoor or some specialty fiber cables.

Using Global Fiber Networks for Environmental Sensing

Using Global Fiber Networks for Environmental Sensing We review recent advances in distributed fiber optic sensing (DFOS) and their applications. The scattering mechanisms in glass, which are exploited for reflectometry-based DFOS, are Rayleigh, Brillouin, and Raman scatterings. These are sensitive to either strain and/or temperature, allowing optical fiber cables to monitor their ambient environment in addition to their conventional role as a medium for telecommunications. Recently, DFOS leveraged technologies developed for telecommunications, such as coherent detection, digital signal processing, coding, and spatial/frequency diversity, to achieve improved performance in terms of measurand resolution, reach, spatial resolution, and bandwidth. We review the theory and architecture of commonly used DFOS methods. We provide recent experimental and field trial results where DFOS was used in wide-ranging applications, such as geohazard monitoring, seismic monitoring, traffic monitoring, and infrastructure health monitoring. Events of interest often have unique signatures either in the spatial, temporal, frequency, or wavenumber domains. Based on the temperature and strain raw data obtained from DFOS, downstream postprocessing allows the detection, classification, and localization of events. Combining DFOS with machine learning methods, it is possible to realize complete sensor systems that are compact, low cost, and can operate in harsh environments and difficult-to-access locations, facilitating increased public safety and smarter cities.

Distributed Optical Fiber Sensing Using Specialty Optical Fibers

Distributed Optical Fiber Sensing Using Specialty Optical Fibers Distributed fiber optic sensing systems use long section of optical fiber as the sensing media. Therefore, the fiber characteristics determines the sensing capability and performance. In this presentation, various types of specialty optical fibers and their sensing applications will be introduced and discussed.

Field Trials of Vibration Detection, Localization and Classification over Deployed Telecom Fiber Cables

Field Trials of Vibration Detection, Localization and Classification over Deployed Telecom Fiber Cables We review sensing fusion results of integrating fiber sensing with video for machine-learning-based localization and classification of impulsive acoustic event detection. Classification accuracy >97% was achieved on aerial coils, and >99% using fiber-based signal enhancers.

Simultaneous Sensing and Communication in Optical Fibers

Simultaneous Sensing and Communication in Optical Fibers We explore two fiber sensing methods which enables coexistence with data transmission on DWDM fiber networks. Vibration detection and localization can be achieved by extracting optical phase from modified coherent transponders. Frequency-diverse chirped-pulse DAS with all-Raman amplification can improve SNR and achieves multi-span monitoring.

Finite Element Modeling of Pavement and State Awareness Using Fiber Optic Sensing

Finite Element Modeling of Pavement and State Awareness Using Fiber Optic Sensing A variety of efforts have been put into sensing and modeling of pavements. Such capability is commonly validated with experimental data and used as reference for damage detection and other structural changes. Finite element models (FEM) often provides a high fidelity physics-base benchmark to evaluate the pavement integrity. On the monitoring of roads and pavements in general, FEM combining with in-situ data largely extends the awareness of the pavement condition, and enhances the durability and sustainability for the transportation infrastructures. Although many studies were performed in order to simulate static stress and strain in the pavement, FEM also show potential for dynamic analysis, allowing to extract both frequency response and wave propagation at any location, including the behavior of the soil on the surroundings. Fiber optical sensing is adopted in this research, which outperforms the traditional sensing techniques, such as accelerometers or strain gauges, given its nature of providing continuous measurement in a relatively less intrinsic fashion. Moreover, the data is adopted to validate and calibrate the FEM with complex material properties, such as damping and viscoelasticity of the pavement as well as other nonlinear behavior of the surrounded soil. The results demonstrate a successful FEM with good accuracy of the waveform prediction.