Ming-Fang Huang NEC Labs America

Ming-Fang Huang

Senior Researcher
Optical Networking & Sensing

Posts

First Field Demonstration of Hollow-Core Fibre Supporting Distributed Acoustic Sensing and DWDM Transmission

We demonstrate a method for measuring the backscatter coefficient of hollow-core fibre (HCF), and show the feasibility of distributed acoustic sensing (DAS) with simultaneous 9.6-Tb/s DWDM transmission over a 1.6-km field-deployed HCF cable.

NEC Labs America Team Attends the 2024 European Conference on Optical Communication (ECOC) in Frankfurt, Germany

Our optical networking & sending team has arrived in Frankfurt for the 2024 European Conference on Optical Communication (ECOC)  and is excited to present many papers and tutorials this week. Please follow this page and on our social media channels for updates.

First Field Trial of Hybrid Fiber Sensing with Data Transmission Resulting in Enhanced Sensing Sensitivity and Spatial Resolution

Optical fiber cables, initially designed for telecommunications, are increasingly repurposed for environmental monitoring using distributed fiber sensing technologies [1,2]. Distributed acoustic sensing (DAS) based on phase optical time domain reflectometry (?-OTDR) of Rayleigh backscatter enables various applications including traffic monitoring [3], railway [4] and perimeter intrusion detection [5] and cable damage detection [6], etc. The sensing range of DAS is typically limited to several tens of kilometers due to low optical signal-to-noise (OSNR) of the received backscatter. Additionally, compatibility of DAS with existing fiber infrastructure is hindered by the unidirectional operation of inline amplifiers with isolators. An alternative approach based on forward transmission was recently proposed [7, 8], which involves probing an optical fiber with a continuous wave (CW) signal and measuring either changes in received phase or the state of polarization (SOP) to detect cumulative vibration-induced strain. Unlike backscatter measurement, forward transmissions methods have longer sensing range due to higher OSNR, and is compatible with existing telecom infrastructure. However, potential challenges include limited localization accuracy, and low number of simultaneous events that can be discriminated and localized [7]. In this paper, we propose a new concept of “hybrid fiber sensing” for long-haul DWDM networks where the repeater node architecture combines DAS with forward-phase sensing (FPS), enhancing sensitivity by 32%. This approach achieves a multi-span, fine-resolution fiber sensing system. The FPS method detects vibration anomalies and coarsely localizes its position to within a fiber span. A segmented DAS then refines the position estimate and provides a precise waveform measurement. Consequently, the special resolution improves from one fiber span of 80 km to 4 m. Our scheme is validated on a test bed comprising lab spools and field fibers, demonstrating the capability to detect and monitor field construction while simultaneously supporting full C-band 400-Gb/s real-time (RT) data transmission.

Deep Learning-based Intrusion Detection and Impulsive Event Classification for Distributed Acoustic Sensing across Telecom Networks

We introduce two pioneering applications leveraging Distributed Fiber Optic Sensing (DFOS) and Machine Learning (ML) technologies. These innovations offer substantial benefits forfortifying telecom infrastructures and public safety. By harnessing existing telecom cables, our solutions excel in perimeter intrusion detection via buried cables and impulsive event classification through aerial cables. To achieve comprehensive intrusion detection, we introduce a label encoding strategy for multitask learning and evaluate the generalization performance of the proposed approach across various domain shifts. For accurate recognition of impulsive acoustic events, we compare several standard choices of representations for raw waveform data and neural network architectures, including convolutional neural networks (ConvNets) and vision transformers (ViT).We also study the effectiveness of the built-in inductive biases under both high- and low-fidelity sensing conditions and varying amounts of labeled training data. All computations are executed locally through edge computing, ensuring real-time detection capabilities. Furthermore, our proposed system seamlessly integrates with cameras for video analytics, significantly enhancing overall situation awareness of the surrounding environment.

NEC Labs America at OFC 2024 San Diego from March 24 – 28

The NEC Labs America team Yaowen Li, Andrea D’Amico, Yue-Kai Huang, Philip Ji, Giacomo Borraccini, Ming-Fang Huang, Ezra Ip, Ting Wang & Yue Tian (Not pictured: Fatih Yaman) has arrived in San Diego, CA for OFC24! Our team will be speaking and presenting throughout the event. Read more for an overview of our participation.

Field Implementation of Fiber Cable Monitoring for Mesh Networks with Optimized Multi-Channel Sensor Placement

We develop a heuristic solution to effectively optimize the placement of multi-channel distributed fiber optic sensors in mesh optical fiber cable networks. The solution has beenimplemented in a field network to provide continuous monitoring.

Real-time Intrusion Detection and Impulsive Acoustic Event Classification with Fiber Optic Sensing and Deep Learning Technologies over Telecom Networks

We review various use cases of distributed-fiber-optic-sensing and machine-learning technologies that offer advantages to telecom fiber networks on existing fiber infrastructures. Byleveraging an edge-AI platform, perimeter intrusion detection and impulsive acoustic event classification can be performed locally on-the-fly, ensuring real-time detection with low latency.

Explore Benefits of Distributed Fiber Optic Sensing for Optical Network Service Providers

We review various applications of distributed fiber optic sensing (DFOS) and machine learning (ML) technologies that particularly benefit telecom operators’ fiber networks and businesses. By leveraging relative phase shift of the reflectance of coherent Rayleigh, Brillouin and Raman scattering of light wave, the ambient environmental vibration, acoustic effects, temperature and fiber/cable strain can be detected. Fiber optic sensing technology allows optical fiber to support sensing features in addition to its conventional role to transmit data in telecommunications. DFOS has recently helped telecom operators by adding multiple sensing features and proved feasibility of co-existence of sensing and communication systems on same fiber. We review the architecture of DFOS technique and show examples where optical fiber sensing helps enhance network operation efficiency and create new services for customers on deployed fiber infrastructures, such as determination of cable locations, cable cut prevention, perimeter intrusion detection and networked sensing applications. In addition, edge AI platform allows data processing to be conducted on-the-fly with low latency. Based on discriminative spatial-temporal signatures of different events of interest, real-time processing of the sensing data from the DFOS system provides results of the detection, classification and localization immediately.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses

We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.

Ambient Noise based Weakly Supervised Manhole Localization Methods over Deployed Fiber Networks

We present a manhole localization method based on distributed fiber optic sensing and weakly supervised machine learning techniques. For the first time to our knowledge, ambient environment data is used for underground cable mapping with the promise of enhancing operational efficiency and reducing field work. To effectively accommodate the weak informativeness of ambient data, a selective data sampling scheme and an attention-based deep multiple instance classification model are adopted, which only requires weakly annotated data. The proposed approach is validated on field data collected by a fiber sensing system over multiple existing fiber networks.