Patient Stratification is the division of patients into subgroups based on biomarkers, risks, or treatment responses. NEC Labs America develops AI models to improve patient stratification in cancer genomics and precision medicine. By analyzing complex biomedical datasets, researchers predict which therapies will work best for each group. Patient Stratification supports personalized medicine and reduces healthcare costs by optimizing treatment strategies.

Posts

Pathologist-Read vs AI-Driven Assessment of Tumor-Infiltrating Lymphocytes in Melanoma

Tumor-infiltrating lymphocytes (TILs) are a provocative biomarker in melanoma, influencing diagnosis, prognosis, and immunotherapy outcomes; however, traditional pathologistreadTIL assessment on hematoxylin and eosin–stained slides is prone to interobserver variability, leading to inconsistent clinical decisions. Therefore, development of newer TIL scoring approachesthat produce more reliable and consistent readouts is important.

Spatial Signatures for Predicting Immunotherapy Outcomes Using Multi-Omics in Non-Small Cell Lung Cancer

Non-small cell lung cancer (NSCLC) shows variable responses to immunotherapy, highlighting the need for biomarkers to guide patient selection. We applied a spatial multi-omics approach to 234 advanced NSCLC patients treated with programmed death 1-based immunotherapy across three cohorts to identify biomarkers associated with outcome. Spatial proteomics (n?=?67) and spatial compartment-based transcriptomics (n?=?131) enabled profiling of the tumor immune microenvironment (TIME). Using spatial proteomics, we identified a resistance cell-type signature including proliferating tumor cells, granulocytes, vessels (hazard ratio (HR)?=?3.8, P?=?0.004), and a response signature, including M1/M2 macrophages and CD4 T cells (HR?=?0.4, P?=?0.019). We then generated a cell-to-gene resistance signature using spatial transcriptomics, which was predictive of poor outcomes (HR?=?5.3, 2.2, 1.7 across Yale, University of Queensland and University of Athens cohorts), while a cell-to-gene response signature predicted favorable outcomes (HR?=?0.22, 0.38 and 0.56, respectively). This framework enables robust TIME modeling and identifies biomarkers to support precision immunotherapy in NSCLC.