Ramanujan K Sheshadri is a former researcher at NEC Laboratories America, Inc.


RoVaR: Robust Multi-agent Tracking through Dual-layer Diversity in Visual and RF Sensor Fusion

The plethora of sensors in our commodity devices provides a rich substrate for sensor-fused tracking. Yet, today’s solutions are unable to deliver robust and high tracking accuracies across multiple agents in practical, everyday environments – a feature central to the future of immersive and collaborative applications. This can be attributed to the limited scope of diversity leveraged by these fusion solutions, preventing them from catering to the multiple dimensions of accuracy, robustness (diverse environmental conditions) and scalability (multiple agents) simultaneously.In this work, we take an important step towards this goal by introducing the notion of dual-layer diversity to the problem of sensor fusion in multi-agent tracking. We demonstrate that the fusion of complementary tracking modalities, – passive/relative (e.g. visual odometry) and active/absolute tracking (e.g.infrastructure-assisted RF localization) offer a key first layer of diversity that brings scalability while the second layer of diversity lies in the methodology of fusion, where we bring together the complementary strengths of algorithmic (for robustness) and data-driven (for accuracy) approaches. ROVAR is an embodiment of such a dual-layer diversity approach that intelligently attends to cross-modal information using algorithmic and data-driven techniques that jointly share the burden of accurately tracking multiple agents in the wild. Extensive evaluations reveal ROVAR’S multi-dimensional benefits in terms of tracking accuracy, scalability and robustness to enable practical multi-agent immersive applications in everyday environments.

SkyHAUL: A Self-Organizing Gigabit Network In The Sky

We design and build SkyHaul, the first large-scale, self-organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mm Wave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth-intensive, latency-sensitive cooperative applications (e.g. LTE coverage during disasters), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line-of-sight distances that limit individual UAVs today.To realize the challenging vision of deploying and maintaining an airborne, mm Wave mesh backhaul that caters to dynamic applications, SkyHaul’s design incorporates various elements: (i) Role-specific UAV operations that simultaneously address application tracking and backhaul connectivity (ii) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (iii)A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We evaluate the performance of SkyHaul through both real-world UAV flight operations as well as large scale simulations.

ELI: Empowering LTE with Interference Awareness in Unlicensed Spectrum

The advent of LTE into the unlicensed spectrum has necessitated the understanding of its operational efficiency when sharing spectrum with different radio access technologies. Our study reveals that LTE, owing to its inherent transmission characteristics, suffers significant performance degradation in the presence of interference caused by hidden terminals. This motivates the need for interference-awareness in LTE’s channel access in unlicensed spectrum. To address this problem, we propose ELI. ELI’s three-pronged solution equips the LTE base station with novel techniques to: (a) accurately detect and measure interference caused by hidden terminals, (b) collect interference statistics from clients across different channels with affordable overhead, and (c) leverage interference-awareness to improve its channel access performance. Our evaluations show that ELI can achieve 1.5-2x throughput gains over baseline schemes. Finally, ELI is LTE-LAA/MulteFire-standard compliant and can be deployed over the existing LTE-LAA implementation without any modifications.