The University of California Santa Barbara (UCSB), founded in 1891, is a leading public research institution that offers a comprehensive liberal arts education. Located at the edge of the Pacific Ocean, UCSB fosters academic inquiry, creativity, and interdisciplinary collaboration, inspiring discoveries with wide-ranging impact. We have worked with UC Santa Barbara on AI research related to generative modeling and low-supervision learning. Our collaboration supports innovations in data-efficient training and the generation of visual content. Please read about our latest news and collaborative publications with the University of California, Santa Barbara.

Posts

F-Fidelity: A Robust Framework for Faithful-NESS Evaluation in Explainable AI

Recent research has developed a number of eXplainable AI (XAI) techniques, such as gradient-based approaches, input perturbation-base methods, and black-box explanation methods. While these XAI techniques can extract meaningful insights from deep learning models, how to properly evaluate them remains an open problem. The most widely used approach is to perturb or even remove what the XAI method considers to be the most important features in an input and observe the changes in the output prediction. This approach, although straightforward, suffers the Out-of-Distribution (OOD) problem as the perturbed samples may no longer follow the original data distribution. A recent method RemOve And Retrain (ROAR) solves the OOD issue by retraining the model with perturbed samples guided by explanations. However, using the model retrained based on XAI methods to evaluate these explainers may cause information leakage and thus lead to unfair comparisons. We propose Fine-tuned Fidelity (F-Fidelity), a robust evaluation framework for XAI, which utilizes i) an explanation-agnostic fine-tuning strategy, thus mitigating the information leakage issue, and ii) a random masking operation that ensures that the removal step does not generate an OOD input. We also design controlled experiments with state-of-the-art (SOTA) explainers and their degraded version to verify the correctness of our framework. We conduct experiments on multiple data modalities, such as images, time series, and natural language. The results demonstrate that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of the explainers. Furthermore, we show both theoretically and empirically that, given a faithful explainer, F-Fidelity metric can be used to compute the sparsity of influential input components, i.e., to extract the true explanation size.

Improving Logits-based Detector without Logits from Black-box LLMs

The advent of Large Language Models (LLMs) has revolutionized text generation, producing outputs that closely mimic human writing. This blurring of lines between machine- and human-written text presents new challenges in distinguishing one from the other – a task further complicated by the frequent updates and closed nature of leading proprietary LLMs. Traditional logits-based detection methods leverage surrogate models for identifying LLM-generated content when the exact logits are unavailable from black-box LLMs. However, these methods grapple with the misalignment between the distributions of the surrogate and the often undisclosed target models, leading to performance degradation, particularly with the introduction of new, closed-source models. Furthermore, while current methodologies are generally effective when the source model is identified, they falter in scenarios where the model version remains unknown, or the test set comprises outputs from various source models. To address these limitations, we present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection even without logits from source LLMs. DALD is designed to align the surrogate model s distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations with minimal training investment. By leveraging corpus samples from publicly accessible outputs of advanced models such as ChatGPT, GPT-4, and Claude-3, DALD fine-tunes surrogate models to synchronize with unknown source model distributions effectively. Our approach performs SOTA in black-box settings on different advanced closed-source and open-source models. The versatility of our method enriches widely adopted zero-shot detection frameworks (DetectGPT, DNA-GPT, Fast-DetectGPT) with a plug-and-play enhancement feature. Extensive experiments validate that our methodology reliably secures high detection precision for LLM-generated text and effectively detects text from diverse model origins through a singular detector. Our method is also robust under the revised text attack and non-English texts.

A Survey on Detection of LLMs-Generated Content

The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, and we have maintained a website to consistently update the latest research as a guiding reference for researchers and practitioners.

DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text

Large language models (LLMs) have notably enhanced the fluency and diversity of machine-generated text. However, this progress also presents a significant challenge in detecting the origin of a given text, and current research on detection methods lags behind the rapid evolution of LLMs. Conventional training-based methods have limitations in flexibility, particularly when adapting to new domains, and they often lack explanatory power. To address this gap, we propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT). Given a text, we first truncate it in the middle and then use only the preceding portion as input to the LLMs to regenerate the new remaining parts. By analyzing the differences between the original and new remaining parts through N-gram analysis in black-box or probability divergence in white-box, we can clearly illustrate significant discrepancies between machine-generated and human-written text. We conducted extensive experiments on the most advanced LLMs from OpenAI, including text-davinci-003, GPT-3.5-turbo, and GPT-4, as well as open-source models such as GPT-NeoX-20B and LLaMa-13B. Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text on four English and one German dataset, outperforming OpenAI’s own classifier, which is trained on millions of text. Additionally, our methods provide reasonable explanations and evidence to support our claim, which is a unique feature of explainable detection. Our method is also robust under the revised text attack and can additionally solve model sourcing.

Dynamic Prompting: A Unified Framework for Prompt Tuning

It has been demonstrated that prompt tuning is highly effective in efficiently eliciting knowledge from language models (LMs). However, the prompt tuning still lags behind fine tuning, especially when the LMs are small. P tuning v2 (Liu et al., 2021b) makes it comparable with finetuning by adding continuous prompts for every layer of the pre trained model. However, prepending fixed soft prompts for all instances, regardless of their discrepancy, is doubtful. In particular, the inserted prompt position, length, and the representations ofprompts for diversified instances through different tasks could all affect the prompt tuning performance. To fill this gap, we propose dynamic prompting (DP): the position, length, and prompt representation can all be dynamically optimized with respect to different tasks and instances. We conduct comprehensive experiments on the SuperGlue benchmark tovalidate our hypothesis and demonstrate substantial improvements. We also derive a unified framework for supporting our dynamic prompting strategy. In particular, we use a simple learning network and Gumble Softmax for learning instance dependent guidance. Experimental results show that simple instance level position aware soft prompts can improve the classification accuracy of up to 6 points on average on five datasets, reducing its gap with fine tuning. Besides, we also prove its universal usefulness under full data, few shot, andmultitask regimes. Combining them together can even further unleash the power of DP, narrowing the distance between fine tuning.

Exploring the limits of ChatGPT for Query or Aspect based Text Summarization

Text summarization has been a crucial problem in natural language processing (NLP) for several decades. It aims to condense lengthy documents into shorter versions while retaining the most critical information. Various methods have been proposed for text summarization, including extractive and abstractive summarization. The emergence of large language models (LLMs) like GPT3 and ChatGPT has recently created significant interest in using these models for text summarization tasks. Recent studies (Goyal et al., 2022, Zhang et al., 2023) have shown that LLMs generated news summaries are already on par with humans. However, the performance of LLMs for more practical applications like aspect or query based summaries is underexplored. To fill this gap, we conducted an evaluation of ChatGPT’s performance on four widely used benchmark datasets, encompassing diverse summaries from Reddit posts, news articles, dialogue meetings, and stories. Our experiments reveal that ChatGPT’s performance is comparable to traditional fine tuning methods in terms of Rouge scores. Moreover, we highlight some unique differences between ChatGPT generated summaries and human references, providing valuable insights into the superpower of ChatGPT for diverse text summarization tasks. Our findings call for new directions in this area, and we plan to conduct further research to systematically examine the characteristics of ChatGPT generated summaries through extensive human evaluation.

Voting Based Approaches For Differentially Private Federated Learning

Differentially Private Federated Learning (DPFL) is an emerging field with many applications. Gradient averaging-based DPFL methods require costly communication rounds and hardly work with large capacity models due to the explicit dimension dependence in its added noise. In this work, inspired by knowledge transfer non federated privacy learning from Papernot et al.(2017, 2018), we design two new DPFL schemes, by voting among the data labels returned from each local model, instead of averaging the gradients, which avoids the dimension dependence and significantly reduces the communication cost. Theoretically, by applying secure multi party computation, we could exponentially amplify the (data dependent) privacy guarantees when the margin of the voting scores are large. Extensive experiments show that our approaches significantly improve the privacy utility trade off over the state of the arts in DPFL.