Yoshiaki Aono works at NEC Corporation.

Posts

Energy-based Generative Models for Distributed Acoustic Sensing Event Classification in Telecom Networks

Distributed fiber-optic sensing combined with machine learning enables continuous monitoring of telecom infrastructure. We employ generative modeling for event classification, supporting semi­ supervised learning, uncertainty calibration, and noise resilience. Our approach offers a scalable, data-efficient solution for real-world deployment in complex environments.

Toward Intelligent and Efficient Optical Networks: Performance Modeling, Co-existence, and Field Trials

Optical transmission networks require intelligent traffic adaptation and efficient spectrum usage. We present scalable machine learning (ML) methods for network performance modeling, andfield trials of distributed fiber sensing and classic optical network traffic coexistence.

First City-Scale Deployment of DASs with Satellite Imagery and AI for Live Telecom Infrastructure Management

We demonstrate real-time fiber risk assessment and dynamic network routing in live metro networks using deployed DASs, satellite imagery, and large-scale AI, achieving the first significantreduction in fiber failures in four years

Strain Accumulation Rate in Fiber Spools in the Presence of Ambient Acoustic Noise in Laser Phase Interferometry

We investigate the growth rate of phase power spectral density in fiber spools in the presence of ambient acoustic noise, observing a complex interplay between spool geometry, shielding effects, and phase cancellation at high acoustic frequencies.

High-Sensitivity Forward-Transmission Vibration Sensing for Real-World Event Detection in Urban Fiber Networks

Publication Date: 4/3/2025 Event: OFC 2025 Reference: Th4C.2: 1-3, 2025 Authors: Jian Fang, NEC Laboratories America, Inc.; Ming-Fang Huang, NEC Laboratories America, Inc.; Scott Kotrla, Verizon; Tiejun J. Xia, Verizon; Glenn A. Wellbrock, Verizon; Jeffrey A Mundt, Verizon; Ting Wang, NEC Laboratories America, Inc.; Yoshiaki Aono, NEC Corporation Abstract: We demonstrated a high-sensitivity forwarding-transmission vibration […]

Field Trials of Manhole Localization and Condition Diagnostics by Using Ambient Noise and Temperature Data with AI in a Real-Time Integrated Fiber Sensing System

Field trials of ambient noise-based automated methods for manhole localization and condition diagnostics using a real-time DAS/DTS integrated system were conducted. Crossreferencingmultiple sensing data resulted in a 94.7% detection rate and enhanced anomaly identification.

First Field Trial of Hybrid Fiber Sensing with Data Transmission Resulting in Enhanced Sensing Sensitivity and Spatial Resolution

Optical fiber cables, initially designed for telecommunications, are increasingly repurposed for environmental monitoring using distributed fiber sensing technologies [1,2]. Distributed acoustic sensing (DAS) based on phase optical time domain reflectometry (?-OTDR) of Rayleigh backscatter enables various applications including traffic monitoring [3], railway [4] and perimeter intrusion detection [5] and cable damage detection [6], etc. The sensing range of DAS is typically limited to several tens of kilometers due to low optical signal-to-noise (OSNR) of the received backscatter. Additionally, compatibility of DAS with existing fiber infrastructure is hindered by the unidirectional operation of inline amplifiers with isolators. An alternative approach based on forward transmission was recently proposed [7, 8], which involves probing an optical fiber with a continuous wave (CW) signal and measuring either changes in received phase or the state of polarization (SOP) to detect cumulative vibration-induced strain. Unlike backscatter measurement, forward transmissions methods have longer sensing range due to higher OSNR, and is compatible with existing telecom infrastructure. However, potential challenges include limited localization accuracy, and low number of simultaneous events that can be discriminated and localized [7]. In this paper, we propose a new concept of “hybrid fiber sensing” for long-haul DWDM networks where the repeater node architecture combines DAS with forward-phase sensing (FPS), enhancing sensitivity by 32%. This approach achieves a multi-span, fine-resolution fiber sensing system. The FPS method detects vibration anomalies and coarsely localizes its position to within a fiber span. A segmented DAS then refines the position estimate and provides a precise waveform measurement. Consequently, the special resolution improves from one fiber span of 80 km to 4 m. Our scheme is validated on a test bed comprising lab spools and field fibers, demonstrating the capability to detect and monitor field construction while simultaneously supporting full C-band 400-Gb/s real-time (RT) data transmission.

Optical Network Anomaly Detection and Localization Based on Forward Transmission Sensing and Route Optimization

We introduce a novel scheme to detect and localize optical network anomaly using forward transmission sensing, and develop a heuristic algorithm to optimize the route selection. The performance is verified via simulations and network experiments.

Field Implementation of Fiber Cable Monitoring for Mesh Networks with Optimized Multi-Channel Sensor Placement

We develop a heuristic solution to effectively optimize the placement of multi-channel distributed fiber optic sensors in mesh optical fiber cable networks. The solution has beenimplemented in a field network to provide continuous monitoring.

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.