Entries by NEC Labs America

Graph Neural Networks, Explained: Our Role in the Future of AI

NEC Laboratories America (NECLA) is advancing the frontier of Graph Neural Networks (GNNs), a transformative AI technology that processes complex, interconnected data. Through innovations like PTDNet for robust learning, novel frameworks for explainability, StrGNN for anomaly detection in dynamic graphs, and GERDQ for calibration with out-of-distribution nodes, NECLA is addressing critical challenges in GNN development. These breakthroughs have real-world implications in fields such as cybersecurity, bioinformatics, and recommendation systems, positioning NECLA as a leader in the evolution of graph-based AI.

Trainingless Adaptation of Pretrained Models for Environmental Sound Classification

Deep neural network (DNN)-based models for environmental sound classification are not robust against a domain to which training data do not belong, that is, out-of-distribution or unseen data. To utilize pretrained models for the unseen domain, adaptation methods, such as finetuning and transfer learning, are used with rich computing resources, e.g., the graphical processing unit (GPU). However, it is becoming more difficult to keep up with research trends for those who have poor computing resources because state-of-the-art models are becoming computationally resource-intensive. In this paper, we propose a trainingless adaptation method for pretrained models for environmental sound classification. To introduce the trainingless adaptation method, we first propose an operation of recovering time–frequency-ish (TF-ish) structures in intermediate layers of DNN models. We then propose the trainingless frequency filtering method for domain adaptation, which is not a gradient-based optimization widely used. The experiments conducted using the ESC-50 dataset show that the proposed adaptation method improves the classification accuracy by 20.40 percentage points compared with the conventional method.

Text-guided Device-realistic Sound Generation for Fiber-based Sound Event Classification

Recent advancements in unique acoustic sensing devices and large-scale audio recognition models have unlocked new possibilities for environmental sound monitoring and detection. However, applying pretrained models to non-conventional acoustic sensors results in performance degradation due to domain shifts, caused by differences in frequency response and noise characteristics from the original training data. In this study, we introduce a text-guided framework for generating new datasets to retrain models specifically for these non-conventional sensors efficiently. Our approach integrates text-conditional audio generative models with two additional steps: (1) selecting audio samples based on text input to match the desired sounds, and (2) applying domain transfer techniques using recorded impulse responses and background noise to simulate the characteristics of the sensors. We demonstrate this process by generating emulated signals for fiber-optic Distributed Acoustic Sensors (DAS), creating datasets similar to the recorded ESC-50 dataset. The generated signals are then used to train a classifier, which outperforms few-shot learning approaches in environmental sound classification.

CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition

Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber-optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiberoptic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory recorded fiber-optic ESC-50 datasets and a real-world fiber optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks.

LLM-based Distributed Code Generation and Cost-Efficient Execution in the Cloud

The advancement of Generative Artificial Intelligence (AI), particularly Large Language Models (LLMs), is reshaping the software industry by automating code generation. Many LLM-driven distributed processing systems rely on serial code generation constrained by predefined libraries, limiting flexibility and adaptability. While some approaches enhance performance through parallel execution or optimize edge-cloud distributed processing for specific domains, they often overlook the cost implications of deployment, restricting scalability and economic feasibility across diverse cloud environments. This paper presents DiCE-C, a system that eliminates these constraints by starting directly from a natural language query. DiCE-C dynamically identifies available tools at runtime, programmatically refines LLM prompts, and employs a stepwise approach—first generating serial code and then transforming it into distributed code. This adaptive methodology enables efficient distributed execution without dependence on specific libraries. By leveraging high-level parallelism at the Application Programming Interface (API) level and managing API execution as services within a Kubernetes-based runtime, DiCE-C reduces idle GPU time and facilitates the use of smaller, cost-effective GPU instances. Experiments with a vision-based insurance application demonstrate that DiCE-C reduces cloud operational costs by up to 72% when using smaller GPUs (A6000 and A4000 GPU machines vs. A100 GPU machine) and by 32% when using identical GPUs (A100 GPU machines). This flexible and cost-efficient approach makes DiCE-C a scalable solution for deploying LLM-generated vision applications in cloud environments.