Entries by NEC Labs America

You Are What You Do: Hunting Stealthy Malware via Data Provenance Analysis

To subvert recent advances in perimeter and host security, the attacker community has developed and employed various attack vectors to make malware much more stealthy than before to penetrate the target system and prolong its presence. The advanced malware, or stealthy malware, impersonates or abuses benign applications and legitimate system tools to minimize its footprints in the target system. One example of such stealthy malware is fileless malware, which resides its malicious logic mostly in the memory of well-trusted processes. It is difficult for traditional detection tools, such as malware scanners, to detect it, as the malware normally does not expose its malicious payload in a file and hides its malicious behaviors among the benign behaviors of the processes.In this paper, we present PROVDETECTOR, a provenance-based approach for detecting stealthy malware. The intuition behind PROVDETECTOR is that although a stealthy malware may impersonate or abuse a benign process, it still exposes its malicious behaviors in the OS (operating system) level provenance. Based on this intuition, PROVDETECTOR first employs a novel selection algorithm to identify possibly malicious parts in the OS level provenance data of a process. Then, it applies a neural embedding and machine learning pipeline to automatically detect any behavior that deviates significantly from normal behaviors. We evaluate our approach on a large provenance dataset from an enterprise network and demonstrate that it achieves very high detection performance (an average F1 score of 0.974) of stealthy malware. Further, we conduct thorough interpretability studies to understand the internals of the learned machine learning models.

Video Person Re-Identification using Learned Clip Similarity Aggregation

We address the challenging task of video-based person re-identification. Recent works have shown that splitting the video sequences into clips and then aggregating clip-based similarity is appropriate for the task. We show that using a learned clip similarity aggregation function allows filtering out hard clip pairs, e.g. where the person is not clearly visible, is in a challenging pose, or where the poses in the two clips are too different to be informative. This allows the method to focus on clip-pairs which are more informative for the task. We also introduce the use of 3D CNNs for video-based re-identification and show their effectiveness by performing equivalent to previous works, which use optical flow in addition to RGB, while using RGB inputs only. We give quantitative results on three challenging public benchmarks and show better or competitive performance. We also validate our method qualitatively.

Unsupervised and Semi-Supervised Domain Adaptation for Action Recognition from Drones

We address the problem of human action classification in drone videos. Due to the high cost of capturing and labeling large-scale drone videos with diverse actions, we present unsupervised and semi-supervised domain adaptation approaches that leverage both the existing fully annotated action recognition datasets and unannotated (or only a few annotated) videos from drones. To study the emerging problem of drone-based action recognition, we create a new dataset, NEC-DRONE, containing 5,250 videos to evaluate the task. We tackle both problem settings with 1) same and 2) different action label sets for the source (e.g., Kinectics dataset) and target domains (drone videos). We present a combination of video and instance-based adaptation methods, paired with either a classifier or an embedding-based framework to transfer the knowledge from source to target. Our results show that the proposed adaptation approach substantially improves the performance on these challenging and practical tasks. We further demonstrate the applicability of our method for learning cross-view action recognition on the Charades-Ego dataset. We provide qualitative analysis to understand the behaviors of our approaches.

DAVID: Dual-Attentional Video Deblurring

Blind video deblurring restores sharp frames from a blurry sequence without any prior. It is a challenging task because the blur due to camera shake, object movement and defocusing is heterogeneous in both temporal and spatial dimensions. Traditional methods train on datasets synthesized with a single level of blur, and thus do not generalize well across levels of blurriness. To address this challenge, we propose a dual attention mechanism to dynamically aggregate temporal cues for deblurring with an end-to-end trainable network structure. Specifically, an internal attention module adaptively selects the optimal temporal scales for restoring the sharp center frame. An external attention module adaptively aggregates and refines multiple sharp frame estimates, from several internal attention modules designed for different blur levels. To train and evaluate on more diverse blur severity levels, we propose a Challenging DVD dataset generated from the raw DVD video set by pooling frames with different temporal windows. Our framework achieves consistently better performance on this more challenging dataset while obtaining strongly competitive results on the original DVD benchmark. Extensive ablative studies and qualitative visualizations further demonstrate the advantage of our method in handling real video blur.

Coordinated Joint Multimodal Embeddings for Generalized Audio-Visual Zero-shot Classification and Retrieval of Videos

We present an audio-visual multimodal approach for the task of zero-shot learning (ZSL) for classification and retrieval of videos. ZSL has been studied extensively in the recent past but has primarily been limited to visual modality and to images. We demonstrate that both audio and visual modalities are important for ZSL for videos. Since a dataset to study the task is currently not available, we also construct an appropriate multimodal dataset with 33 classes containing 156, 416 videos, from an existing large scale audio event dataset. We empirically show that the performance improves by adding audio modality for both tasks of zero-shot classification and retrieval, when using multi-modal extensions of embedding learning methods. We also propose a novel method to predict the `dominant’ modality using a jointly learned modality attention network. We learn the attention in a semi-supervised setting and thus do not require any additional explicit labelling for the modalities. We provide qualitative validation of the modality specific attention, which also successfully generalizes to unseen test classes.

Active Adversarial Domain Adaptation

We propose an active learning approach for transferring representations across domains. Our approach, active adversarial domain adaptation (AADA), explores a duality between two related problems: adversarial domain alignment and importance sampling for adapting models across domains. The former uses a domain discriminative model to align domains, while the latter utilizes the model to weigh samples to account for distribution shifts. Specifically, our importance weight promotes unlabeled samples with large uncertainty in classification and diversity compared to la-beled examples, thus serving as a sample selection scheme for active learning. We show that these two views can be unified in one framework for domain adaptation and transfer learning when the source domain has many labeled examples while the target domain does not. AADA provides significant improvements over fine-tuning based approaches and other sampling methods when the two domains are closely related. Results on challenging domain adaptation tasks such as object detection demonstrate that the advantage over baseline approaches is retained even after hundreds of examples being actively annotated.