Entries by NEC Labs America

Learning Robust Representations with Graph Denoising Policy Network

Existing representation learning methods based on graph neural networks and their variants rely on the aggregation of neighborhood information, which makes it sensitive to noises in the graph, e.g. erroneous links between nodes, incorrect/missing node features. In this paper, we propose Graph Denoising Policy Network (short for GDPNet) to learn robust representations from noisy graph data through reinforcement learning. GDPNet first selects signal neighborhoods for each node, and then aggregates the information from the selected neighborhoods to learn node representations for the down-stream tasks. Specifically, in the signal neighborhood selection phase, GDPNet optimizes the neighborhood for each target node by formulating the process of removing noisy neighborhoods as a Markov decision process and learning a policy with task-specific rewards received from the representation learning phase. In the representation learning phase, GDPNet aggregates features from signal neighbors to generate node representations for down-stream tasks, and provides task-specific rewards to the signal neighbor selection phase. These two phases are jointly trained to select optimal sets of neighbors for target nodes with maximum cumulative task-specific rewards, and to learn robust representations for nodes. Experimental results on node classification task demonstrate the effectiveness of GDNet, outperforming the state-of-the-art graph representation learning methods on several well-studied datasets.

Adaptive Neural Network for Node Classification in Dynamic Networks

Given a network with the labels for a subset of nodes, transductive node classification targets to predict the labels for the remaining nodes in the network. This technique has been used in a variety of applications such as voxel functionality detection in brain network and group label prediction in social network. Most existing node classification approaches are performed in static networks. However, many real-world networks are dynamic and evolve over time. The dynamics of both node attributes and network topology jointly determine the node labels. In this paper, we study the problem of classifying the nodes in dynamic networks. The task is challenging for three reasons. First, it is hard to effectively learn the spatial and temporal information simultaneously. Second, the network evolution is complex. The evolving patterns lie in both node attributes and network topology. Third, for different networks or even different nodes in the same network, the node attributes, the neighborhood node representations and the network topology usually affect the node labels differently, it is desirable to assess the relative importance of different factors over evolutionary time scales. To address the challenges, we propose AdaNN, an adaptive neural network for transductive node classification. AdaNN learns node attribute information by aggregating the node and its neighbors, and extracts network topology information with a random walk strategy. The attribute information and topology information are further fed into two connected gated recurrent units to learn the spatio-temporal contextual information. Additionally, a triple attention module is designed to automatically model the different factors that influence the node representations. AdaNN is the first node classification model that is adaptive to different kinds of dynamic networks. Extensive experiments on real datasets demonstrate the effectiveness of AdaNN.

Contextual Grounding of Natural Language Phrases in Images

In this paper, we introduce a contextual grounding approach that captures the context in corresponding text entities and image regions to improve the grounding accuracy. Specifically, the proposed architecture accepts pre-trained text token embeddings and image object features from an off-the-shelf object detector as input. Additional encoding to capture the positional and spatial information can be added to enhance the feature quality. There are separate text and image branches facilitating respective architectural refinements for different modalities. The text branch is pre-trained on a large-scale masked language modeling task while the image branch is trained from scratch. Next, the model learns the contextual representations of the text tokens and image objects through layers of high-order interaction respectively. The final grounding head ranks the correspondence between the textual and visual representations through cross-modal interaction. In the evaluation, we show that our model achieves the state-of-the-art grounding accuracy of 71.36% over the Flickr30K Entities dataset. No additional pre-training is necessary to deliver competitive results compared with related work that often requires task-agnostic and task-specific pre-training on cross-modal datasets. The implementation is publicly available at https://gitlab.com/necla-ml/Grounding

On Novel Object Recognition: A Unified Framework for Discriminability and Adaptability

The rich and accessible labeled data fueled the revolutionary successes of deep learning in object recognition. However, recognizing objects of novel classes with limited supervision information provided, i.e., Novel Object Recognition (NOR), remains a challenging task. We identify in this paper two key factors for the success of NOR that previous approaches fail to simultaneously guarantee. The first is producing discriminative feature representations for images of novel classes, and the second is generating a flexible classifier readily adapted to novel classes provided with limited supervision signals. To secure both key factors, we propose a framework which decouples a deep classification model into a feature extraction module and a classification module. We learn the former to ensure feature discriminability with a standard multi-class classification task by fully utilizing the competing information among all classes within a training set, and learn the latter to secure adaptability by training a meta-learner network which generates classifier weights whenever provided with minimal supervision information of target classes. Extensive experiments on common benchmark datasets in the settings of both zero-shot and few-shot learning demonstrate our method achieves state-of-the-art performance.

Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles

We address the problem of 3D object detection from 2D monocular images in autonomous driving scenarios. We propose to lift the 2D images to 3D representations using learned neural networks and leverage existing networks working directly on 3D data to perform 3D object detection and localization. We show that, with carefully designed training mechanism and automatically selected minimally noisy data, such a method is not only feasible, but gives higher results than many methods working on actual 3D inputs acquired from physical sensors. On the challenging KITTI benchmark, we show that our 2D to 3D lifted method outperforms many recent competitive 3D networks while significantly outperforming previous state-of-the-art for 3D detection from monocular images. We also show that a late fusion of the output of the network trained on generated 3D images, with that trained on real 3D images, improves performance. We find the results very interesting and argue that such a method could serve as a highly reliable backup in case of malfunction of expensive 3D sensors, if not potentially making them redundant, at least in the case of low human injury risk autonomous navigation scenarios like warehouse automation.

Degeneracy in Self-Calibration Revisited and a Deep Learning Solution for Uncalibrated SLAM

Self-calibration of camera intrinsics and radial distortion has a long history of research in the computer vision community. However, it remains rare to see real applications of such techniques to modern Simultaneous Localization And Mapping (SLAM) systems, especially in driving scenarios. In this paper, we revisit the geometric approach to this problem, and provide a theoretical proof that explicitly shows the ambiguity between radial distortion and scene depth when two-view geometry is used to self-calibrate the radial distortion. In view of such geometric degeneracy, we propose a learning approach that trains a convolutional neural network (CNN) on a large amount of synthetic data. We demonstrate the utility of our proposed method by applying it as a checkerboard-free calibration tool for SLAM, achieving comparable or superior performance to previous learning and hand-crafted method

GLoSH: Global-Local Spherical Harmonics for Intrinsic Image Decomposition

Traditional intrinsic image decomposition focuses on decomposing images into reflectance and shading, leaving surfaces normals and lighting entangled in shading. In this work, we propose a Global-Local Spherical Harmonics (GLoSH) lighting model to improve the lighting component, and jointly predict reflectance and surface normals. The global SH models the holistic lighting while local SH account for the spatial variation of lighting. Also, a novel non-negative lighting constraint is proposed to encourage the estimated SH to be physically meaningful. To seamlessly reflect the GLoSH model, we design a coarse-to-fine network structure. The coarse network predicts global SH, reflectance and normals, and the fine network predicts their local residuals. Lacking labels for reflectance and lighting, we apply synthetic data for model pre-training and fine-tune the model with real data in a self-supervised way. Compared to the state-of-the-art methods only targeting normals or reflectance and shading, our method recovers all components and achieves consistently better results on three real datasets, IIW, SAW and NYUv2.

Domain Adaptation for Structured Output via Discriminative Patch Representations

Predicting structured outputs such as semantic segmentation relies on expensive per-pixel annotations to learn supervised models like convolutional neural networks. However, models trained on one data domain may not generalize well to other domains without annotations for model finetuning. To avoid the labor-intensive process of annotation, we develop a domain adaptation method to adapt the source data to the unlabeled target domain. We propose to learn discriminative feature representations of patches in the source domain by discovering multiple modes of patch-wise output distribution through the construction of a clustered space. With such representations as guidance, we use an adversarial learning scheme to push the feature representations of target patches in the clustered space closer to the distributions of source patches. In addition, we show that our framework is complementary to existing domain adaptation techniques and achieves consistent improvements on semantic segmentation. Extensive ablations and results are demonstrated on numerous benchmark datasets with various settings, such as synthetic-to-real and cross-city scenarios.

Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective

Zero-shot learning (ZSL) aims to recognize instances of unseen classes solely based on the semantic descriptions of the classes. Existing algorithms usually formulate it as a semantic-visual correspondence problem, by learning mappings from one feature space to the other. Despite being reasonable, previous approaches essentially discard the highly precious discriminative power of visual features in an implicit way, and thus produce undesirable results. We instead reformulate ZSL as a conditioned visual classification problem, i.e., classifying visual features based on the classifiers learned from the semantic descriptions. With this reformulation, we develop algorithms targeting various ZSL settings: For the conventional setting, we propose to train a deep neural network that directly generates visual feature classifiers from the semantic attributes with an episode-based training scheme; For the generalized setting, we concatenate the learned highly discriminative classifiers for seen classes and the generated classifiers for unseen classes to classify visual features of all classes; For the transductive setting, we exploit unlabeled data to effectively calibrate the classifier generator using a novel learning-without-forgetting self-training mechanism and guide the process by a robust generalized cross-entropy loss. Extensive experiments show that our proposed algorithms significantly outperform state-of-the-art methods by large margins on most benchmark datasets in all the ZSL settings.

VeCharge: Intelligent Energy Management for Electric Vehicle charging

2018’s 1.2 million North American charging ports will grow ten times to over 12.6 million by 2027, according to Navigant, which could overwhelm the nation’s grids. DC Fast charging requires grid upgrade to supply the new charging demand. However, since the utilization ratio of those charging station is currently low. Demand charge cost can reach up to 90% of the total bill. Combining fast charging with energy storage can mitigate grid impacts and reduce demand charges. EV specific pricing is proposed for EV charging by many energy suppliers. Without managed charging, EV owner will lose the benefit of lowering charging cost by avoiding peak hour charging or missing the period when renewable energy generation is abundant.