LLM-ASSIST: Enhancing Closed-Loop Planning with Language-Based Reasoning

Although planning is a crucial component of the autonomous driving stack, researchers have yet to develop robust planning algorithms that are capable of safely handling the diverse range of possible driving scenarios. Learning-based planners suffer from overfitting and poor long-tail performance. On the other hand, rule-based planners generalize well, but might fail to handle scenarios that require complex driving maneuvers. To address these limitations, we investigate the possibility of leveraging the common-sense reasoning capabilities of Large Language Models (LLMs) such as GPT4 and Llama2 to generate plans for self-driving vehicles. In particular, we develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner. Guided by commonsense reasoning abilities of LLMs, our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach. Through extensive evaluation on the nuPlan benchmark, we achieve state-of-the-art performance, outperforming all existing pure learning- and rule-based methods across most metrics. Our code will be available at https://llmassist.github.io/

OpEnCam: Optical Encryption Camera

Lensless cameras multiplex the incoming light before it is recorded by the sensor. This ability to multiplex the incoming light has led to the development of ultra-thin, high-speed, and single-shot 3D imagers. Recently, there have been various attempts at demonstrating another useful aspect of lensless cameras – their ability to preserve the privacy of a scene by capturing encrypted measurements. However, existing lensless camera designs suffer numerous inherent privacy vulnerabilities. To demonstrate this, we develop the first comprehensive attack model for encryption cameras, and propose OpEnCam — a novel lensless OPtical ENcryption CAmera design that overcomes these vulnerabilities. OpEnCam encrypts the incoming light before capturing it using the modulating ability of optical masks. Recovery of the original scene from an OpEnCam measurement is possible only if one has access to the camera’s encryption key, defined by the unique optical elements of each camera. Our OpEnCam design introduces two major improvements over existing lensless camera designs – (a) the use of two co-axially located optical masks, one stuck to the sensor and the other a few millimeters above the sensor and (b) the design of mask patterns, which are derived heuristically from signal processing ideas. We show, through experiments, that OpEnCam is robust against a range of attack types while still maintaining the imaging capabilities of existing lensless cameras. We validate the efficacy of OpEnCam using simulated and real data. Finally, we built and tested a prototype in the lab for proof-of-concept.

Seamless Service Handover in UAV-based Mobile Edge Computing

Unmanned aerial vehicles (UAVs), such as drones, can carry high-performance computing devices (e.g., servers) to provide flexible and on-demand data processing services for theusers in the network edge, leading to the so-called mobile edge computing. In mobile edge computing, researchers have already explored how to optimize the computation offloading and the trajectory planning of UAVs, as well as how to perform the service handover when mobile users move from one location to another. However, there is one critical challenge that has been neglected in past research, which is the limited battery life of UAVs. On average, commercial-level drones only have a battery life of around 30 minutes to 2 hours. As a result, during operation, mobile edge computing carriers have to frequently deal with service handovers that require shifting users and their computing jobs from low-battery UAVs to new fully-charged UAVs. This is the first work that focuses on addressing this challenge with the goal of providing continuous and uninterrupted mobile edge computing service. In particular, we propose a seamless service handover system that achieves minimum service downtime when handling the duty shift between low-battery UAVs and new fullycharged UAVs. In addition, we propose a novel UAV dispatchalgorithm that provides guidelines about how to dispatch new fully-charged UAVs and where to retrieve low-battery UAVs, with the objective of maximizing UAVs’ service time. The effectiveness of the proposed service handover system and the proposed UAV dispatch algorithm is demonstrated through comprehensive simulations using a time-series event-driven simulator.

Blind Cyclic Prefix-based CFO Estimation in MIMO-OFDM Systems

Low-complexity estimation and correction of carrier frequency offset (CFO) are essential in orthogonal frequency division multiplexing (OFDM). In this paper, we propose a low overhead blind CFO estimation technique based on cyclic prefix (CP), in multi-input multi-output (MIMO)-OFDM systems. We propose to use antenna diversity for CFO estimation. Given that the RF chains for all antenna elements at a communication node share the same clock, the carrier frequency offset (CFO) between two points may be estimated by using the combination of the received signal at all antennas. We improve our method by combining the antenna diversity with time diversity by considering the CP for multiple OFDM symbols. We provide a closed-form expression for CFO estimation and present algorithms that can considerably improve the CFO estimation performance at the expense of a linear increase in computational complexity. We validate the effectiveness of our estimation scheme via extensive numerical analysis.

Semantic Multi-Resolution Communications

Deep learning based joint source-channel coding (JSCC) has demonstrated significant advancements in data reconstruction compared to separate source-channel coding (SSCC). This superiority arises from the suboptimality of SSCC when dealing with finite block-length data. Moreover, SSCC falls short in reconstructing data in a multi-user and/or multi-resolution fashion, as it only tries to satisfy the worst channel and/or the highest quality data. To overcome these limitations, we propose a novel deep learning multi-resolution JSCC framework inspired by the concept of multi-task learning (MTL). This proposed framework excels at encoding data for different resolutions through hierarchical layers and effectively decodes it by leveraging both current and past layers of encoded data. Moreover, this framework holds great potential for semantic communication, where the objective extends beyond data reconstruction to preserving specific semantic attributes throughout the communication process. These semantic features could be crucial elements such as class labels, essential for classification tasks, or other key attributes that require preservation. Within this framework, each level of encoded data can be carefully designed to retain specific data semantics. As a result, the precision of a semantic classifier can be progressively enhanced across successive layers, emphasizing the preservation of targeted semantics throughout the encoding and decoding stages. We conduct experiments on MNIST and CIFAR10 dataset. The experiment with both datasets illustrates that our proposed method is capable of surpassing the SSCC method in reconstructing data with different resolutions, enabling the extraction of semantic features with heightened confidence in successive layers. This capability is particularly advantageous for prioritizing and preserving more crucial semantic features within the datasets.

GLAD: Content-Aware Dynamic Graphs for Log Anomaly Detection

Logs play a crucial role in system monitoring and debugging by recording valuable system information, including events and status. Although various methods have been proposed to detect anomalies in log sequences, they often overlook the significance of considering relationships among system components, such as services and users, which can be identified from log contents. Understanding these relationships is vital for identifying anomalies and their underlying causes. To address this issue, we introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect relational anomalies in system logs. GLAD incorporates log semantics, relationship patterns, and sequential patterns into a unified framework for anomaly detection. Specifically, GLAD first introduces a field extraction module that utilizes prompt-based few-shot learning to extract essential field information, such as services and users, from log contents. Then GLAD constructs dynamic log graphs for sliding windows by leveraging the log events and extracted fields. These graphs represent events and fields as nodes and their relationships as edges. Subsequently, we propose atemporal-attentive graph edge anomaly detection model for identifying anomalous relationships in the dynamic log graphs. This model employs a Graph Neural Network (GNN)-based encoder enhanced with transformers to capture structural, content, and temporal features. We evaluate our proposed method on three datasets, and the results demonstrate the effectiveness of GLAD in detecting anomalies indicated by varying relation patterns.

Long Term Monitoring and Analysis of Brood X Cicada Activity by Distributed Fiber Optic Sensing Technology

Brood X is the largest of the 15 broods of periodical cicadas, and individuals from this brood emerged across the Eastern United States in spring 2021. Using distributed acoustic sensing (DAS) technology, the activity of Brood X cicadas was monitored in their natural environment in Princeton, NJ. Critical information regarding their acoustic signatures and activity level is collected and analyzed using standard outdoor-grade telecommunication fiber cables. We believe these results have the potential to be a quantitative baseline for regional Brood X activity and pave the way for more detailed monitoring of insect populations to combat global insect decline. We also show that it is possible to transform readily available fiber optic networks into environmental sensors with no additional installation costs. To our knowledge, this is the first reported use case of a distributed fiber optic sensing system for entomological sciences and environmental studies.

Real-Time Photonic Blind Interference Cancellation

mmWave devices can broadcast multiple spatially-separated data streams simultaneously in order to increase data transfer rates. Data transfer can, however, be compromised by interference. Photonic blind interference cancellation systems offer a power-efficient means of mitigating interference, but previous demonstrations of such systems have been limited by high latencies and the need for regular calibration. Here, we demonstrate real-time photonic blind interference cancellation using an FPGA-photonic system executing a zero-calibration control algorithm. Our system offers a greater than 200-fold reduction in latency compared to previous work, enabling sub-second cancellation weight identification. We further investigate key trade-offs between system latency, power consumption, and success rate, and we validate sub-Nyquist sampling for blind interference cancellation. We estimate that photonic interference cancellation can reduce the power required for digitization and signal recovery by greater than 74 times compared to the digital electronic alternative.

Beyond Communication: Telecom Fiber Networks for Rain Detection and Classification

We present the field trial of an innovative neural network and DAS-based technique, employing a pre-trained CNN fine-tuning strategy for effective rain detection and classification within two practical scenarios.

Distributed Fiber-Optic Sensor as an Acoustic Communication Receiver Array

A novel acoustic transmission technique using distributed acoustic sensors is introduced. By choosing better incident angles for smaller fading and employing an 8- channel beamformer, over 10KB data is transmitted at a 6.4kbps data rate.