iFinder: Structured Zero-Shot Vision-Based LLM Grounding for Dash-Cam Video Reasoning

Grounding large language models (LLMs) in domain-specific tasks like post-hoc dash-cam driving video analysis is challenging due to their general-purpose training and lack of structured inductive biases. As vision is often the sole modality available for such analysis (i.e. no LiDAR, GPS, etc.), existing video-basedvision-language models (V-VLMs) struggle with spatial reasoning, causal inference, and explainability of events in the input video. To this end, we introduce iFinder, a structured semantic grounding framework that decouples perception from reasoning by translating dash-cam videos into a hierarchical, interpretable data structure for LLMs. iFinder operates as a modular, training-free pipeline that employs pretrained vision models to extract critical cues—object pose, lane positions, and object trajectories—which are hierarchically organized into frame and video-level structures. Combined with a three-block prompting strategy, it enables step-wise, grounded reasoning for the LLM to refine a peer V-VLM’s outputs and provide accurate reasoning. Evaluations on four public dash-cam video benchmarks show that iFinder’s proposed grounding with domain-specific cues—especially object orientation and global context—significantly outperforms end-to-end V-VLMs on four zero-shot driving benchmarks, with up to 39% gains in accident reasoning accuracy. By grounding LLMs with driving domain-specific representations, iFinder offers a zero-shot, interpretable, and reliable alternativeto end-to-end V-VLMs for post-hoc driving video understanding

Uni-LoRA: One Vector is All You Need

Low-Rank Adaptation (LoRA) has become the de facto parameter-efficient fine-tuning (PEFT) method for large language models (LLMs) by constraining weight updates to low-rank matrices. Recent works such as Tied-LoRA, VeRA, and VB-LoRA push efficiency further by introducing additional constraints to reduce the trainable parameter space. In this paper, we show that the parameter space reduction strategies employed by these LoRA variants can be formulated within a unified framework, Uni-LoRA, where the LoRA parameter space, flattened as a high-dimensional vector space R^D, can be reconstructed through a projection from a subspace R^d, with d ll D. We demonstrate that the fundamental difference among various LoRA methods lies in the choice of the projection matrix, P in R^(Unknown sysvar: (D times d)).Most existing LoRA variants rely on layer-wise or structure-specific projections that limit cross-layer parameter sharing, thereby compromising parameter efficiency. In light of this, we introduce an efficient and theoretically grounded projection matrix that is isometric, enabling global parameter sharing and reducing computation overhead. Furthermore, under the unified view of Uni-LoRA, this design requires only a single trainable vector to reconstruct LoRA parameters for the entire LLM – making Uni-LoRA both a unified framework and a “one-vector-only” solution. Extensive experiments on GLUE, mathematical reasoning, and instruction tuning benchmarks demonstrate that Uni-LoRA achieves state-of-the-art parameter efficiency while outperforming or matching prior approaches in predictive performance.

xTime: Extreme Event Prediction with Hierarchical Knowledge Distillation and Expert Fusion

Extreme events frequently occur in real-world time series and often carry significant practical implications. In domains such as climate and healthcare, these events, such as floods, heatwaves, or acute medical episodes, can lead to serious consequences. Accurate forecasting of such events is therefore of substantial importance. Most existing time series forecasting models are optimized for overall performance within the prediction window, but often struggle to accurately predict extreme events, such as high temperatures or heart rate spikes. The main challenges are data imbalance and the neglect of valuable information contained in intermediate events that precede extreme events. In this paper, we propose xTime, a novel framework for extreme event forecasting in time series. xTime leverages knowledge distillation to transfer information from models trained on lower-rarity events, thereby improving prediction performance on rarer ones. In addition, we introduce a MoE mechanism that dynamically selects and fuses outputs from expert models across different rarity levels, which further improves the forecasting performance for extreme events. Experiments on multiple datasets show that xTime achieves consistent improvements, with forecasting accuracy on extreme events improving from 3% to 78%.

Correlation-aware Online Change Point Detection

Change point detection aims to identify abrupt shifts occurring at multiple points within a data sequence. This task becomes particularly challenging in the online setting, where different types of change can occur, including shifts in both the marginal and joint distributions of the data. In this paper, we address these challenges by tracking the Riemannian geometry of correlation matrices, allowing Riemannian metrics to compute the geodesic distance as an accurate measure of correlation dynamics.We introduce Rio-CPD, a correlation-aware online change point detection framework that integrates the Riemannian geometry of the manifold of symmetric positive definite matrices with the cumulative sum (CUSUM) statistic for detecting change points. Rio-CPD employs a novel CUSUM design by computing the geodesic distance between current observations and the Fréchet mean of prior observations. With appropriate choices of Riemannian metrics, Rio-CPD offers a simple yet effective and computationally efficient algorithm. We also provide a theoretical analysis on standard metrics for change point detection within Rio-CPD. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods on detection accuracy, average detection delay, and efficiency.

Quantitative Bounds for Length Generalization in Transformers

We study the problem of length generalization (LG) in transformers: the ability of a model trained on shorter sequences to maintain performance when evaluated on much longer, previously unseen inputs. Prior work by Huang et al. (2025) established that transformers eventually achieve length generalization once the training sequence length exceeds some finite threshold, but left open the question of how large it must be. In this work, we provide the first quantitative bounds on the required training length for length generalization to occur. Motivated by previous empirical and theoretical work, we analyze LG in several distinct problem settings: error control vs. average error control over an input distribution, infinite-precision softmax attention vs. finite-precision attention (which reduces to an argmax) in the transformer, and one- vs. two-layer transformers. In all scenarios, we prove that LG occurs when the internal behavior of the transformer on longer sequences can be “simulated” by its behavior on shorter sequences seen during training. Our bounds give qualitative estimates for the length of training data required for a transformer to generalize, and we verify these insights empirically. These results sharpen our theoretical understanding of the mechanisms underlying extrapolation in transformers, and formalize the intuition that richer training data is required for generalization on more complex tasks.

Neuromorphic Photonics-Enabled Near-Field RF Sensing with Residual Signal Recovery and Classification

We present near-field radio-frequency (RF) sensing using microwave photonic canceler (MPC) for residual signal recovery and neuromorphic photonic recurrent neural network (PRNN)chip and FPGA hardware to implement machine learning for high-bandwidth and low-latency classification.

Scalable Photonic Neurons for High-speed Automatic Modulation Classification

Automatic modulation classification (AMC) is becoming increasingly critical in the context of growing demands for ultra-wideband, low-latency signal intelligence in 5G/6G systems, with photonics addressing the bandwidth and real-time adaptability limitations faced by traditional radio-frequency (RF) electronics. This paper presents the first experimental photonicimplementation of AMC, achieved through a fully functional photonic neural network built from scalable microring resonators that co-integrate electro-optic modulation and weighting. Thiswork also represents a system-level deployment of such compact photonic neurons in a real photonic neural network, demonstrating the significant potential of photonic computing forlarge-scale, complex RF intellegence for next-generation wireless communication systems.

Sound Event Classification meets Data Assimilation with Distributed Fiber-Optic Sensing

Distributed Fiber-Optic Sensing (DFOS) is a promising technique for large-scale acoustic monitoring. However, its wide variation in installation environments and sensor characteristics causes spatial heterogeneity. This heterogeneity makes it difficult to collect representative training data. It also degrades the generalization ability of learning-based models, such as fine-tuning methods, under a limited amount of training data. To address this, we formulate Sound Event Classification (SEC) as data assimilation in an embedding space. Instead of training models, we infer sound event classes by combining pretrained audio embeddings with simulated DFOS signals. Simulated DFOS signals are generated by applying various frequency responses and noise patterns to microphone data, which allows for diverse prior modeling of DFOS conditions. Our method achieves out-of-domain (OOD) robust classification without requiring model training. The proposed method achieved accuracy improvements of 6.42, 14.11, and 3.47 percentage points compared with conventional zero-shot and two types of fine-tune methods, respectively. By employing the simulator in the framework of data assimilation, the proposed method also enables precise estimation of physical parameters from observed DFOS signals.

SlideCraft: Context-aware Slides Generation Agent

Creating effective slide presentations requires adapting both content and structure to match the communication context e.g. whether the presentation is for summarizing to executives, or reporting progress to research supervisors. In research and enterprise environments, this need for context-sensitive presentations often leads to repeated, manual reformatting of the same material to suit different audiences. Existing generative systems support slide creation but typically rely on structured inputs, assume a fixed format, and offer limited ability to iteratively refine outputs through natural language feedback. Moreover, they rarely accommodate organizational constraints such as formatting guidelines, domain-specific terminology, or branding requirements. We present SlideCraft, a context-aware generative agent that autonomously creates and edits slide presentations based on natural language instructions. SlideCraft infers the intended presentation context, such as an executive-facing or a project review summary for technical oversight, and selects the appropriate slide template. It then synthesizes content from input documents, enriches it with external knowledge and internal assets, assembles it into a structured intermediate representation, and generates a validated slide deck. SlideCraft supports both first-time slide creation and iterative updates, operating through familiar natural language interfaces like email or messaging tools. Our experiments demonstrate that SlideCraft consistently produces high-quality, context-aware presentations tailored to diverse communication settings, with minimal human input and reliable adherence to enterprise constraints.

TalentScout: Multimodal AI-Driven Expert Finding in Organizations

Identifying subject-matter experts within organizations remains a challenging task due to the scale, heterogeneity, and unstructured nature of enterprise knowledge assets. We present TalentScout, an AI-driven expert identification system that constructs a unified, skill-centric knowledge graph by ingesting and analyzing diverse media, including research papers, reports, presentations, transcripts, and supervisor recommendations. TalentScout’s modular architecture integrates document parsing, audio/video transcription, metadata extraction, large language model-based skill extraction, multi-factor author disambiguation, and evidence-weighted skill attribution. At query time, TalentScout decomposes natural language queries into canonical skill requirements, traverses the constructed knowledge graph, and ranks experts based on aggregated skill weights, document quality, and endorsement signals, providing document-level justifications for each recommendation. We evaluate TalentScout on multiple public and internal enterprise datasets, including DBLP, TREC Enterprise, Tilburg, and ManConCorpus. Using standard information retrieval metrics such as Precision@ 5, Recall@5, nDCG@5, and Mean Reciprocal Rank (MRR), TalentScout consistently outperforms leading baselines, achieving up to 24% higher Precision@ 5 in early expert retrieval. The results highlight TalentScout’s scalability, transparency, and accuracy, establishing it as a practical solution for evidence-based expert discovery and organizational talent management.