Real-Time Photonic Blind Interference Cancellation

mmWave devices can broadcast multiple spatially-separated data streams simultaneously in order to increase data transfer rates. Data transfer can, however, be compromised by interference. Photonic blind interference cancellation systems offer a power-efficient means of mitigating interference, but previous demonstrations of such systems have been limited by high latencies and the need for regular calibration. Here, we demonstrate real-time photonic blind interference cancellation using an FPGA-photonic system executing a zero-calibration control algorithm. Our system offers a greater than 200-fold reduction in latency compared to previous work, enabling sub-second cancellation weight identification. We further investigate key trade-offs between system latency, power consumption, and success rate, and we validate sub-Nyquist sampling for blind interference cancellation. We estimate that photonic interference cancellation can reduce the power required for digitization and signal recovery by greater than 74 times compared to the digital electronic alternative.

Beyond Communication: Telecom Fiber Networks for Rain Detection and Classification

We present the field trial of an innovative neural network and DAS-based technique, employing a pre-trained CNN fine-tuning strategy for effective rain detection and classification within two practical scenarios.

Distributed Fiber-Optic Sensor as an Acoustic Communication Receiver Array

A novel acoustic transmission technique using distributed acoustic sensors is introduced. By choosing better incident angles for smaller fading and employing an 8- channel beamformer, over 10KB data is transmitted at a 6.4kbps data rate.

OFDM Signal Transmission Using Distributed Fiber-Optic Acoustic Sensing

Acoustic data transmission with the Orthogonal Frequency Division Multiplexing (OFDM) signal has been demonstrated using a Distributed Acoustic Sensor (DAS) based on Phase-sensitive Optical Time-Domain Reflectometry (?-OTDR).

Adaptation Speed Analysis for Fairness-Aware Causal Models

For example, in machine translation tasks, to achieve bidirectional translation between two languages, the source corpus is often used as the target corpus, which involves the training of two models with opposite directions. The question of which one can adapt most quickly to a domain shift is of significant importance in many fields. Specifically, consider an original distribution p that changes due to an unknown intervention, resulting in a modified distribution p*. In aligning p with p*, several factors can affect the adaptation rate, including the causal dependencies between variables in p. In real-life scenarios, however, we have to consider the fairness of the training process, and it is particularly crucial to involve a sensitive variable (bias) present between a cause and an effect variable. To explore this scenario, we examine a simple structural causal model (SCM) with a cause-bias-effect structure, where variable A acts as a sensitive variable between cause (X) and effect (Y). The two models respectively exhibit consistent and contrary cause-effect directions in the cause-bias-effect SCM. After conducting unknown interventions on variables within the SCM, we can simulate some kinds of domain shifts for analysis. We then compare the adaptation speeds of two models across four shift scenarios. Additionally, we prove the connection between the adaptation speeds of the two models across all interventions.

Calibrate Graph Neural Networks under Out-of-Distribution Nodes via Deep Q-learning

Graph neural networks (GNNs) have achieved great success in dealing with graph-structured data that are prevalent in the real world. The core of graph neural networks is the message passing mechanism that aims to generate the embeddings of nodes by aggregating the neighboring node information. However, recent work suggests that GNNs also suffer the trustworthiness issues. Our empirical study shows that the calibration error of the in-distribution (ID) nodes would be exacerbated if a graph is mixed with out-of-distribution (OOD) nodes, and we assume that the noisy information from OOD nodes is the root for the worsened calibration error. Both previous study and our empirical study suggest that adjusting the weights of edges could be a promising way to reduce the adverse impact from the OOD nodes. However, how to precisely select the desired edges and modify the corresponding weights is not trivial, since the distribution of OOD nodes is unknown to us. To tackle this problem, we propose a Graph Edge Re-weighting via Deep Q-learning (GERDQ) framework to calibrate the graph neural networks. Our framework aims to explore the potential influence of the change of the edge weights on target ID nodes by sampling and traversing the edges in the graph, and we formulate this process as a Markov Decision Process (MDP). Many existing GNNs could be seamlessly incorporated into our framework. Experimental results show that when wrapped with our method, the existing GNN models can yield lower calibration error under OOD nodes as well as comparable accuracy compared to the original ones and other strong baselines. The source code is available at:https://github.com/DamoSWL/Calibration-GNN-OOD.

Citizen Science for the Sea with Information Technologies: An Open Platform for Gathering Marine Data and Marine Litter Detection from Leisure Boat Instruments

Data crowdsourcing is an increasingly pervasive and lifestyle-changing technology due to the flywheel effect that results from the interaction between the Internet of Things and Cloud Computing. This paper presents the Citizen Science for the Sea with Information Technologies (C4Sea-IT) framework. It is an open platform for gathering marine data from leisure boat instruments. C4Sea-IT aims to provide a coastal marine data gathering, moving, processing, exchange, and sharing platform using the existing navigation instruments and sensors for today’s leisure and professional vessels. In this work, a use case for the detection and tracking of marine litter is shown. The final goal is weather/ocean forecasts argumentation with Artificial Intelligence prediction models trained with crowdsourced data.

Source-Free Domain Adaptive Fundus Image Segmentation with Class-Balanced Mean Teacher

This paper studies source-free domain adaptive fundus image segmentation which aims to adapt a pretrained fundus segmentation model to a target domain using unlabeled images. This is a challenging task because it is highly risky to adapt a model only using unlabeled data. Most existing methods tackle this task mainly by designing techniques to carefully generate pseudo labels from the model’s predictions and use the pseudo labels to train the model. While often obtaining positive adaption effects, these methods suffer from two major issues. First, they tend to be fairly unstable – incorrect pseudo labels abruptly emerged may cause a catastrophic impact on the model. Second, they fail to consider the severe class imbalance of fundus images where the foreground (e.g., cup) region is usually very small. This paper aims to address these two issues by proposing the Class-Balanced Mean Teacher (CBMT) model. CBMT addresses the unstable issue by proposing a weak-strong augmented mean teacher learning scheme where only the teacher model generates pseudo labels from weakly augmented images to train a student model that takes strongly augmented images as input. The teacher is updated as the moving average of the instantly trained student, which could be noisy. This prevents the teacher model from being abruptly impacted by incorrect pseudo-labels. For the class imbalance issue, CBMT proposes a novel loss calibration approach to highlight foreground classes according to global statistics. Experiments show that CBMT well addresses these two issues and outperforms existing methods on multiple benchmarks.

Degradation-Resistant Unfolding Network for Heterogeneous Image Fusion

Heterogeneous image fusion (HIF) aims to enhance image quality by merging complementary information of images captured by different sensors. Early model-based approaches have strong interpretability while being limited by non-adaptive feature extractors with poor generalizability.

Few-Shot Video Classification via Representation Fusion and Promotion Learning

Recent few-shot video classification (FSVC) works achieve promising performance by capturing similarity across support and query samples with different temporal alignment strategies or learning discriminative features via Transformer block within each episode. However, they ignore two important issues: a) It is difficult to capture rich intrinsic action semantics from a limited number of support instances within each task. b) Redundant or irrelevant frames in videos easily weaken the positive influence of discriminative frames. To address these two issues, this paper proposes a novel Representation Fusion and Promotion Learning (RFPL) mechanism with two sub-modules: meta-action learning (MAL) and reinforced image representation (RIR). Concretely, during training stage, we perform online learning for seeking a task-shared meta-action bank to enrich task-specific action representation by injecting global knowledge. Besides, we exploit reinforcement learning to obtain the importance of each frame and refine the representation. This operation maximizes the contribution of discriminative frames to further capture the similarity of support and query samples from the same category. Our RFPL framework is highly flexible that it can be integrated with many existing FSVC methods. Extensive experiments show that RFPL significantly enhances the performance of existing FSVC models when integrated with them.