FACESEC: A Fine-grained Robustness Evaluation Framework for Face Recognition Systems

We present FACESEC, a framework for fine-grained robustness evaluation of face recognition systems. FACESEC evaluation is performed along four dimensions of adversarial modeling: the nature of perturbation (e.g., pixel-level or face accessories), the attacker’s system knowledge (about training data and learning architecture), goals (dodging or impersonation), and capability (tailored to individual inputs or across sets of these). We use FACESEC to study five face recognition systems in both closed-set and open-set settings, and to evaluate the state-of-the-art approach for defending against physically realizable attacks on these. We find that accurate knowledge of neural architecture is significantly more important than knowledge of the training data in black-box attacks. Moreover, we observe that open-set face recognition systems are more vulnerable than closed-set systems under different types of attacks. The efficacy of attacks for other threat model variations, however, appears highly dependent on both the nature of perturbation and the neural network architecture. For example, attacks that involve adversarial face masks are usually more potent, even against adversarially trained models, and the ArcFace architecture tends to be more robust than the others.

SpaceBeam: LiDAR-Driven One-Shot mmWave Beam Management

mmWave 5G networks promise to enable a new generation of networked applications requiring a combination of high throughput and ultra-low latency. However, in practice, mmWave performance scales poorly for large numbers of users due to the significant overhead required to manage the highly-directional beams. We find that we can substantially reduce or eliminate this overhead by using out-of-band infrared measurements of the surrounding environment generated by a LiDAR sensor. To accomplish this, we develop a ray-tracing system that is robust to noise and other artifacts from the infrared sensor, create a method to estimate the reflection strength from sensor data, and finally apply this information to the multiuser beam selection process. We demonstrate that this approach reduces beam-selection overhead by over 95% in indoor multi-user scenarios, reducing network latency by over 80% and increasing throughput by over 2× in mobile scenarios.

Cross-Domain Similarity Learning for Face Recognition in Unseen Domains

Face recognition models trained under the assumption of identical training and test distributions often suffer from poor generalization when faced with unknown variations, such as a novel ethnicity or unpredictable individual make-ups during test time. In this paper, we introduce a novel cross-domain metric learning loss, which we dub Cross-Domain Triplet (CDT) loss, to improve face recognition in unseen domains. The CDT loss encourages learning semantically meaningful features by enforcing compact feature clusters of identities from one domain, where the compactness is measured by underlying similarity metrics that belong to another training domain with different statistics. Intuitively, it discriminatively correlates explicit metrics derived from one domain, with triplet samples from another domain in a unified loss function to be minimized within a network, which leads to better alignment of the training domains. The network parameters are further enforced to learn generalized features under domain shift, in a model-agnostic learning pipeline. Unlike the recent work of Meta Face Recognition [18], our method does not require careful hard-pair sample mining and filtering strategy during training. Extensive experiments on various face recognition benchmarks show the superiority of our method in handling variations, compared to baseline and the state-of-the-art methods.

Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction

Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory prediction, learning multimodal outputs, and better predictions by imposing constraints using driving knowledge. Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many. But the impact of those methods in learning diverse hypotheses is under-studied as such objectives highly depend on their initialization for diversity. As our first contribution, we propose a novel Divide-And-Conquer (DAC) approach that acts as a better initialization technique to WTA objective, resulting in diverse outputs without any spurious modes. Our second contribution is a novel trajectory prediction framework called ALAN that uses existing lane centerlines as anchors to provide trajectories constrained to the input lanes. Our framework provides multi-agent trajectory outputs in a forward pass by capturing interactions through hypercolumn descriptors and incorporating scene information in the form of rasterized images and per-agent lane anchors. Experiments on synthetic and real data show that the proposed DAC captures the data distribution better compare to other WTA family of objectives. Further, we show that our ALAN approach provides on par or better performance with SOTA methods evaluated on Nuscenes urban driving benchmark.

Fusing the Old with the New: Learning Relative Pose with Geometry-Guided Uncertainty

Learning methods for relative camera pose estimation have been developed largely in isolation from classical geometric approaches. The question of how to integrate predictions from deep neural networks (DNNs) and solutions from geometric solvers, such as the 5-point algorithm [37], has as yet remained under-explored. In this paper, we present a novel framework that involves probabilistic fusion between the two families of predictions during network training, with a view to leveraging their complementary benefits in a learnable way. The fusion is achieved by learning the DNN un- certainty under explicit guidance by the geometric uncertainty, thereby learning to take into account the geometric solution in relation to the DNN prediction. Our network features a self-attention graph neural network, which drives the learning by enforcing strong interactions between different correspondences and potentially modeling complex relationships between points. We propose motion parmeterizations suitable for learning and show that our method achieves state-of-the-art performance on the challenging DeMoN [61] and ScanNet [8] datasets. While we focus on relative pose, we envision that our pipeline is broadly applicable for fusing classical geometry and deep learning.

Automated Anomaly Detection via Curiosity-Guided Search and Self-Imitation Learning

Anomaly detection is an important data mining task with numerous applications, such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with complicated data, the process of building an effective deep learning-based system for anomaly detection still highly relies on human expertise and laboring trials. Also, while neural architecture search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for anomaly detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this article, we propose AutoAD, an automated anomaly detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we first design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controller’s internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoAD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

Survivable Distributed Fiber Optic Sensors Placement against Single Link Failure

Empowered by the rapid advancement of fiber optic sensing techniques in recent years, network carriers are able to upgrade their network infrastructure beyond the basic communication services with extra sensing applications and services (e.g., monitoring traffic and road condition, leakage detection, etc.), thus evolving to a new era of Infrastructure-as-a-Sensor (IaaSr) or Network-as-a-Sensor (NaaSr). When network carriers upgrade their network infrastructures with distributed fiber optic sensing (DFOS) technique to provide IaaSr services, there will arise a critical challenge: how to provide survivable (or reliable) IaaSr services against network failures (e.g., fiber cut). In this work, for the first time, we investigate the problem of survivable DFOS placement against single link failure. More specifically, we study where to place the primary and backup sensors and how to assign the primary and backup fiber sensing routes, with the objective of minimizing the number of sensors used. We formulate the problem using Integer Linear Programming (ILP) to facilitate the optimal solution. In addition, we propose a set of efficient heuristic algorithms to solve the problem in a fast manner. In particular, the proposed Shared-one algorithm provides a cost-efficient shared protection, through a one-step global optimization of the assignment of primary and backup DFOS placement. We conduct extensive simulations to evaluate the performance of the proposed solutions. We find out that Shared-one can achieve a close-to-optimal performance, compared to the ILP optimal results, while outperforming the other heuristic solutions with an average performance improvement by at least 16%.

Unsupervised Concept Representation Learning for Length-Varying Text Similarity

Measuring document similarity plays an important role in natural language processing tasks. Most existing document similarity approaches suffer from the information gap caused by context and vocabulary mismatches when comparing varying-length texts. In this paper, we propose an unsupervised concept representation learning approach to address the above issues. Specifically, we propose a novel Concept Generation Network (CGNet) to learn concept representations from the perspective of the entire text corpus. Moreover, a concept-based document matching method is proposed to leverage advances in the recognition of local phrase features and corpus-level concept features. Extensive experiments on real-world data sets demonstrate that new method can achieve a considerable improvement in comparing length-varying texts. In particular, our model achieved 6.5% better F1 Score compared to the best of the baseline models for a concept-project benchmark dataset.

Estimation of Core-Cladding Concentricity Error From GAWBS Noise Spectrum

CCCE in a 60-km fiber is estimated from its GAWBS noise spectrum by comparing the TR 1m modes with the R 0m modes. The estimated CCCE value 0.73 μm is consistent with conventional measurements of 0.6–0.8 μm.

Field Trial of Abnormal Activity Detection and Threat Level Assessment with Fiber Optic Sensing for Telecom Infrastructure Protection

We report the field trial results of monitoring abnormal activities near deployed cable with fiber-optic-sensing technology for cable protection. Detection and position determination of abnormal events and evaluating the threat to the cable is realized.