Object Detection with a Unified Label Space from Multiple Datasets

Given multiple datasets with different label spaces, the goal of this work is to train a single object detector predicting over the union of all the label spaces. The practical benefits of such an object detector are obvious and significant—application-relevant categories can be picked and merged form arbitrary existing datasets. However, naive merging of datasets is not possible in this case, due to inconsistent object annotations. Consider an object category like faces that is annotated in one dataset, but is not annotated in another dataset, although the object itself appears in the later’s images. Some categories, like face here, would thus be considered foreground in one dataset, but background in another. To address this challenge, we design a framework which works with such partial annotations, and we exploit a pseudo labeling approach that we adapt for our specific case. We propose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations and define a new challenging experimental setup for this task based on existing public datasets. We show improved performances compared to competitive baselines and appropriate adaptations of existing work

Shuffle and Attend: Video Domain Adaptation

We address the problem of domain adaptation in videos for the task of human action recognition. Inspired by image-based domain adaptation, we can perform video adaptation by aligning the features of frames or clips of source and target videos. However, equally aligning all clips is sub-optimal as not all clips are informative for the task. As the first novelty, we propose an attention mechanism which focuses on more discriminative clips and directly optimizes for video-level (cf. clip-level) alignment. As the backgrounds are often very different between source and target, the source background-corrupted model adapts poorly to target domain videos. To alleviate this, as a second novelty, we propose to use the clip order prediction as an auxiliary task. The clip order prediction loss, when combined with domain adversarial loss, encourages learning of representations which focus on the humans and objects involved in the actions, rather than the uninformative and widely differing (between source and target) backgrounds. We empirically show that both components contribute positively towards adaptation performance. We report state-of-the-art performances on two out of three challenging public benchmarks, two based on the UCF and HMDB datasets, and one on Kinetics to NEC-Drone datasets. We also support the intuitions and the results with qualitative results.

SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction

We propose advances that address two key challenges in future trajectory prediction: (i) multimodality in both training data and predictions and (ii) constant time inference regardless of number of agents. Existing trajectory predictions are fundamentally limited by lack of diversity in training data, which is difficult to acquire with sufficient coverage of possible modes. Our first contribution is an automatic method to simulate diverse trajectories in the top-view. It uses pre-existing datasets and maps as initialization, mines existing trajectories to represent realistic driving behaviors and uses a multi-agent vehicle dynamics simulator to generate diverse new trajectories that cover various modes and are consistent with scene layout constraints. Our second contribution is a novel method that generates diverse predictions while accounting for scene semantics and multi-agent interactions, with constant-time inference independent of the number of agents. We propose a convLSTM with novel state pooling operations and losses to predict scene-consistent states of multiple agents in a single forward pass, along with a CVAE for diversity. We validate our proposed multi-agent trajectory prediction approach by training and testing on the proposed simulated dataset and existing real datasets of traffic scenes. In both cases, our approach outperforms SOTA methods by a large margin, highlighting the benefits of both our diverse dataset simulation and constant-time diverse trajectory prediction methods.”

BAFFLE: Decentralized Blockchain based Aggregator-Free Federated Learning

A key aspect of Federated Learning (FL) is the requirement of a centralized aggregator to maintain and update the global model. However, in many cases orchestrating a centralized aggregator might be infeasible due to numerous operational constraints. In this paper, we introduce BAFFLE, an aggregator free, blockchain driven, FL environment that is inherently decentralized. BAFFLE leverages Smart Contracts (SC) to coordinate the round delineation, model aggregation and update tasks in FL. BAFFLE boosts computational performance by decomposing the global parameter space into distinct chunks followed by a score and bid strategy. In order to characterize the performance of BAFFLE, we conduct experiments on a private Ethereum network and use the centralized and aggregator driven methods as our benchmark. We show that BAFFLE significantly reduces the gas costs for FL on the blockchain as compared to a direct adaptation of the aggregator based method. Our results also show that BAFFLE achieves high scalability and computational efficiency while delivering similar accuracy as the benchmark methods.

Stochastic Decision-Making Model for Aggregation of Residential Units with PV-Systems and Storages

Many residential energy consumers have installed photovoltaic (PV) panels and energy storage systems. These residential users can aggregate and participate in the energy markets. A stochastic decision making model for an aggregation of these residential units for participation in two-settlement markets is proposed in this paper. Scenarios are generated using Seasonal Autoregressive Integrated Moving Average (SARIMA) model and joint probability distribution function of the forecast errors to model the uncertainties of the real-time prices, PV generations and demands. The proposed scenario generation model of this paper treats forecast errors as random variable, which allows to reflect new information observed in the real-time market into scenario generation process without retraining SARIMA or re-fitting probability distribution functions over the forecast errors. This approach significantly improves the computational time of the proposed model. A simulation study is conducted for an aggregation of 6 residential units, and the results highlights the benefits of aggregation as well as the proposed stochastic decision-making model.

Robust Graph Representation Learning via Neural Sparsification

Graph representation learning serves as the core of important prediction tasks, ranging from product recommendation to fraud detection. Reallife graphs usually have complex information in the local neighborhood, where each node is described by a rich set of features and connects to dozens or even hundreds of neighbors. Despite the success of neighborhood aggregation in graph neural networks, task-irrelevant information is mixed into nodes’ neighborhood, making learned models suffer from sub-optimal generalization performance. In this paper, we present NeuralSparse, a supervised graph sparsification technique that improves generalization power by learning to remove potentially task-irrelevant edges from input graphs. Our method takes both structural and nonstructural information as input, utilizes deep neural networks to parameterize sparsification processes, and optimizes the parameters by feedback signals from downstream tasks. Under the NeuralSparse framework, supervised graph sparsification could seamlessly connect with existing graph neural networks for more robust performance. Experimental results on both benchmark and private datasets show that NeuralSparse can yield up to 7.2% improvement in testing accuracy when working with existing graph neural networks on node classification tasks.

Austere Flash Caching with Deduplication and Compression

Modern storage systems leverage flash caching to boost I/O performance, and enhancing the space efficiency and endurance of flash caching remains a critical yet challenging issue in the face of ever-growing data-intensive workloads. Deduplication and compression are promising data reduction techniques for storage and I/O savings via the removal of duplicate content, yet they also incur substantial memory overhead for index management. We propose AustereCache, a new flash caching design that aims for memory-efficient indexing, while preserving the data reduction benefits of deduplication and compression. AustereCache emphasizes austere cache management and proposes different core techniques for efficient data organization and cache replacement, so as to eliminate as much indexing metadata as possible and make lightweight in-memory index structures viable. Trace-driven experiments show that our AustereCache prototype saves 69.9-97.0% of memory usage compared to the state-of-the-art flash caching design that supports deduplication and compression, while maintaining comparable read hit ratios and write reduction ratios and achieving high I/O throughput.

Improving Face Recognition by Clustering Unlabeled Faces in the Wild (arXiv)

Read Improving Face Recognition by Clustering Unlabeled Faces in the Wild (arXiv). While deep face recognition has benefited significantly from large scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in controlled settings, where the labeled and unlabeled data sets have no overlapping identities by construction. This is not realistic in large scale face recognition, where one must contend with such overlaps, the frequency of which increases with the volume of data. Ignoring identity overlap leads to significant labeling noise, as data from the same identity is split into multiple clusters. To address this, we propose a novel identity separation method based on extreme value theory. It is formulated as an out of distribution detection algorithm, and greatly reduces the problems caused by overlapping identity label noise. Considering cluster assignments as pseudo labels, we must also overcome the labeling noise from clustering errors. We propose a modulation of the cosine loss, where the modulation weights correspond to an estimate of clustering uncertainty. Extensive experiments on both controlled and real settings demonstrate our method’s consistent improvements over supervised baselines, e.g., 11.6% improvement on IJB A verification.

DeepTrack: Grouping RFID Tags Based on Spatio-temporal Proximity in Retail Spaces

RFID applications for taking inventory and processing transactions in point-of-sale (POS) systems improve operational efficiency but are not designed to provide insights about customers’ interactions with products. We bridge this gap by solving the proximity grouping problem to identify groups of RFID tags that stay in close proximity to each other over time. We design DeepTrack, a framework that uses deep learning to automatically track the group of items carried by a customer during her shopping journey. This unearths hidden purchase behaviors helping retailers make better business decisions and paves the way for innovative shopping experiences such as seamless checkout (‘a la Amazon Go). DeepTrack employs a recurrent neural network (RNN) with the attention mechanism, to solve the proximity grouping problem in noisy settings without explicitly localizing tags. We tailor DeepTrack’s design to track not only mobile groups (products carried by customers) but also flexibly identify stationary tag groups (products on shelves). The key attribute of DeepTrack is that it only uses readily available tag data from commercial off-the-shelf RFID equipment. Our experiments demonstrate that, with only two hours training data, DeepTrack achieves a grouping accuracy of 98.18% (99.79%) when tracking eight mobile (stationary) groups.

Improving Disentangled Text Representation Learning with Information Theoretical Guidance

Learning disentangled representations of natural language is essential for many NLP tasks, e.g., conditional text generation, style transfer, personalized dialogue systems, etc. Similar problems have been studied extensively for other forms of data, such as images and videos. However, the discrete nature of natural language makes the disentangling of textual representations more challenging (e.g., the manipulation over the data space cannot be easily achieved). Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text, without any supervision on semantics. A new mutual information upper bound is derived and leveraged to measure dependence between style and content. By minimizing this upper bound, the proposed method induces style and content embeddings into two independent low-dimensional spaces. Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation in terms of content and style preservation.