Summer Highlights at NEC Labs America: Teamwork, Innovation, and Fun

This summer at NEC Laboratories America was full of energy, teamwork, and connection. From volleyball games in San Jose and TopGolf with colleagues from Princeton to kayaking adventures, a campus picnic, and celebrating our incredible interns, our teams came together to learn, laugh, and grow. Here’s a look back at the highlights that made Summer 2025 so memorable.

Harnessing Vision Models for Time Series Analysis: A Survey

Time series analysis has witnessed the inspiring development from traditional autoregressive models, deep learning models, to recent Transformers and Large Language Models (LLMs). Efforts in leveraging vision models for time series analysis have also been made along the way but are less visible to the community due to the predominant research on sequence modeling in this domain. However, the discrepancy between continuous time series and the discrete token space of LLMs, and the challenges in explicitly modeling the correlations of variates in multivariate time series have shifted some research attentions to the equally successful Large Vision Models (LVMs) and Vision Language Models (VLMs). To fill the blank in the existing literature, this survey discusses the advantages of vision models over LLMs in time series analysis. It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy that answer the key research questions including how to encode time series as images and how to model the imaged time series for various tasks. Additionally, we address the challenges in the pre- and post-processing steps involved in this framework and outline future directions to further advance time series analysis with vision models.

Multi-modal Time Series Analysis: A Tutorial and Survey

Multi-modal time series analysis has recently emerged as a prominent research area, driven by the increasing availability of diverse data modalities, such as text, images, and structured tabular data from real-world sources. However, effective analysis of multi-modal time series is hindered by data heterogeneity, modality gap, misalignment, and inherent noise. Recent advancements in multi-modal time series methods have exploited the multi-modal context via cross-modal interactions based on deep learning methods, significantly enhancing various downstream tasks. In this tutorial and survey, we present a systematic and up-to-date overview of multi-modal time series datasets and methods. We first state the existing challenges of multi-modal time series analysis and our motivations, with a brief introduction of preliminaries. Then, we summarize the general pipeline and categorize existing methods through a unified cross-modal interaction framework encompassing fusion, alignment, and transference at different levels (i.e., input, intermediate, output), where key concepts and ideas are highlighted. We also discuss the real-world applications of multi-modal analysis for both standard and spatial time series, tailored to general and specific domains. Finally, we discuss future research directions to help practitioners explore and exploit multi-modal time series. The up-to-date resources are provided in the GitHub repository. https://github.com/UConn-DSIS/Multi-modal-Time-Series-Analysis.

ICeTEA: Mixture of Detectors for Metric-Log Anomaly Detection

Anomaly detection is essential for identifying unusual system behaviors and has wide-ranging applications, from fraud detection to system monitoring. In web servers, anomalies are typically detected using two types of data: metrics (numerical indicators of performance) and logs (records of system events). While correlations between metrics and logs in real-world scenarios highlight the need for joint analysis, which is termed the “metric-log anomaly detection” problem, it has not been fully explored yet due to inherent differences between metrics and logs. In this paper, we propose ICeTEA, a novel system for metric-log anomaly detection that integrates three detectors: a metric-log detector based on a multimodal Variational Autoencoder (VAE), and two individual metric and log detectors. By leveraging the ensemble technique to combine outputs of these detectors, ICeTEA enhances the effectiveness and robustness of metric-log anomaly detection. Case studies demonstrate two key functionalities of ICeTEA: data visualization and rankings of contributions to anomaly scores. Experiments demonstrate that our proposed ICeTEA accurately detects true anomalies while significantly reducing false positives.

Roadside Multi-LiDAR Data Fusion for Enhanced Traffic Safety

Roadside LiDAR (Light Detection and Ranging) sensors promise safer and faster traffic management and vehicular operations. However, occlusion and small view angles are significant challenges to widespread use of roadside LiDARs. We consider fusing data from multiple LiDARs at a traffic intersection to better estimate traffic parameters than one can estimate from a single LiDAR. The key challenge is to calibrate multiple LiDARs both in time and space. The problem is more complex when heterogeneous sensors differ in resolution and are positioned arbitrarily on a traffic intersection.We propose a calibration technique to fuse multiple LiDARs. We show that our technique works on various data granularity and enables real-time analytics for roadside traffic monitoring. We evaluate on a large number of simulated traffic scenarios and show that fusion improves accuracy of vehicle counting and near-collision detection. We apply our algorithm on real traffic data and demonstrate utility in classifying vehicles and detecting occluded traffic participants.

Identifying Combinatorial Regulatory Genes for Cell Fate Decision via Reparameterizable Subset Explanations

Cell fate decisions are highly coordinated processes governed bycomplex interactions among numerous regulatory genes, whiledisruptions in these mechanisms can lead to developmental abnormalitiesand disease. Traditional methods often fail to capture suchcombinatorial interactions, limiting their ability to fully model cellfate dynamics. Here, we introduce MetaVelo, a global feature explanationframework for identifying key regulatory gene sets influencingcell fate transitions. MetaVelo models these transitions as ablack-box function and employs a differentiable neural ordinary differentialequation (ODE) surrogate to enable efficient optimization.By reparameterizing the problem as a controllable data generationprocess, MetaVelo overcomes the challenges posed by the nondifferentiablenature of cell fate dynamics. Benchmarking acrossdiverse stand-alone and longitudinal single-cell RNA-seq datasetsand three black-box cell fate models demonstrates its superiorityover 12 baseline methods in predicting developmental trajectoriesand identifying combinatorial regulatory gene sets. MetaVelo furtherdistinguishes independent from synergistic regulatory genes,offering novel insights into the gene interactions governing cellfate. With the growing availability of high-resolution single-celldata, MetaVelo provides a scalable and effective framework fo

On Synthesizing Data for Context Attribution in Question Answering

Question Answering (QA) accounts for a significantportion of LLM usage “in the wild”.However, LLMs sometimes produce false ormisleading responses, also known as hallucinations.Therefore, grounding the generatedanswers in contextually provided information—i.e., providing evidence for the generated text—is paramount for LLMs’ trustworthiness. Providingthis information is the task of context attribution.In this paper, we systematically studyLLM-based approaches for this task, namelywe investigate (i) zero-shot inference, (ii) LLMensembling, and (iii) fine-tuning of small LMson synthetic data generated by larger LLMs.Our key contribution is SYNQA: a novel generativestrategy for synthesizing context attributiondata. Given selected context sentences, anLLM generates QA pairs that are supported bythese sentences. This leverages LLMs’ naturalstrengths in text generation while ensuring clearattribution paths in the synthetic training data.We show that the attribution data synthesizedvia SYNQA is highly effective for fine-tuningsmall LMs for context attribution in differentQA tasks and domains. Finally, with a userstudy, we validate the usefulness of small, efficientLMs (fine-tuned on synthetic data fromSYNQA) in context attribution for QA.

Feasibility study on scour monitoring for subsea cables of offshore wind turbines using distributed fiber optic sensors

Subsea cables are critical components of offshore wind turbines and are subjected to scour. Monitoring the scour conditions of subsea cables plays significant roles in improving safety and operation efficiency and reducing the levelized cost of electricity. This paper presents a feasibility study on monitoring subsea cables using distributed fiber optic sensors (DFOS), aiming to evaluate the technical and economic performance of utilizing DFOS to detect, locate, and quantify scour conditions. Laboratory experiments were conducted to test the response ofDFOS measurements to the change of support conditions which were used to simulate scour effects, and a finite element model was developed to investigate the impact of scour on the mechanical responses of subsea cables in different scour scenarios. Economic analysis of three methods, involving the use of DFOS, discrete sensors, and underwater robots, is performed via a case study. The results showed that the proposed method has technical and economic benefits for monitoring subsea cables. This research offers insights into monitoring subsea structuresfor offshore wind turbines.

Group Relative Augmentation for Data Efficient Action Detection

Adapting large Video-Language Models (VLMs) for action detection using only a few examples poses challenges like overfitting and the granularity mismatch between scene-level pre-training and required person-centric understanding. We propose an efficient adaptation strategy combining parameter-efficient tuning (LoRA) with a novel learnable internal feature augmentation. Applied within the frozen VLM backbone using FiLM, these augmentations generate diverse feature variations directly relevant to the task. Additionally, we introduce a group-weighted loss function that dynamically modulates the training contribution of each augmented sample based on its prediction divergence relative to the group average. This promotes robust learning by prioritizing informative yet reasonable augmentations. We demonstrate our method’s effectiveness on complex multi-label, multi-person action detection datasets (AVA, MOMA), achieving strong mAP performance and showcasing significant data efficiency for adapting VLMs from limited examples.

Uncertainty Propagation on LLM Agent

Large language models (LLMs) integrated into multi-step agent systems enable complex decision-making processes across various applications. However, their outputs often lack reliability, making uncertainty estimation crucial. Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multi-step decision-making process and the dynamic interactions between agents and their environments. To address these limitations, we propose SAUP (Situation Awareness Uncertainty Propagation), a novel framework that propagates uncertainty through each step of an LLM-based agent’s reasoning process. SAUP incorporates situational awareness by assigning situational weights to each step’s uncertainty during the propagation. Our method, compatible with various one-step uncertainty estimation techniques, provides a comprehensive and accurate uncertainty measure. Extensive experiments on benchmark datasets demonstrate that SAUP significantly outperforms existing state-of-the-art methods, achieving up to 20% improvement in AUROC.