Distributed Fiber-Optic Sensor as an Acoustic Communication Receiver Array

A novel acoustic transmission technique using distributed acoustic sensors is introduced. By choosing better incident angles for smaller fading and employing an 8- channel beamformer, over 10KB data is transmitted at a 6.4kbps data rate.

OFDM Signal Transmission Using Distributed Fiber-Optic Acoustic Sensing

Acoustic data transmission with the Orthogonal Frequency Division Multiplexing (OFDM) signal has been demonstrated using a Distributed Acoustic Sensor (DAS) based on Phase-sensitive Optical Time-Domain Reflectometry (?-OTDR).

The Industrial Lab Advantage: Delivering on the Expectations of AI | Future of Work News

Our Chris White outlines how Invisible AI transforms our lives and its potential to bring about transformative societal changes, including safer space travel, reliable cell networks, smarter cities, productive factories, and efficient homes. Invisible AI will intelligently anticipate needs, automate tasks, and enhance the human experience.

Calibrate Graph Neural Networks under Out-of-Distribution Nodes via Deep Q-learning

Graph neural networks (GNNs) have achieved great success in dealing with graph-structured data that are prevalent in the real world. The core of graph neural networks is the message passing mechanism that aims to generate the embeddings of nodes by aggregating the neighboring node information. However, recent work suggests that GNNs also suffer the trustworthiness issues. Our empirical study shows that the calibration error of the in-distribution (ID) nodes would be exacerbated if a graph is mixed with out-of-distribution (OOD) nodes, and we assume that the noisy information from OOD nodes is the root for the worsened calibration error. Both previous study and our empirical study suggest that adjusting the weights of edges could be a promising way to reduce the adverse impact from the OOD nodes. However, how to precisely select the desired edges and modify the corresponding weights is not trivial, since the distribution of OOD nodes is unknown to us. To tackle this problem, we propose a Graph Edge Re-weighting via Deep Q-learning (GERDQ) framework to calibrate the graph neural networks. Our framework aims to explore the potential influence of the change of the edge weights on target ID nodes by sampling and traversing the edges in the graph, and we formulate this process as a Markov Decision Process (MDP). Many existing GNNs could be seamlessly incorporated into our framework. Experimental results show that when wrapped with our method, the existing GNN models can yield lower calibration error under OOD nodes as well as comparable accuracy compared to the original ones and other strong baselines. The source code is available at:https://github.com/DamoSWL/Calibration-GNN-OOD.

Adaptation Speed Analysis for Fairness-Aware Causal Models

For example, in machine translation tasks, to achieve bidirectional translation between two languages, the source corpus is often used as the target corpus, which involves the training of two models with opposite directions. The question of which one can adapt most quickly to a domain shift is of significant importance in many fields. Specifically, consider an original distribution p that changes due to an unknown intervention, resulting in a modified distribution p*. In aligning p with p*, several factors can affect the adaptation rate, including the causal dependencies between variables in p. In real-life scenarios, however, we have to consider the fairness of the training process, and it is particularly crucial to involve a sensitive variable (bias) present between a cause and an effect variable. To explore this scenario, we examine a simple structural causal model (SCM) with a cause-bias-effect structure, where variable A acts as a sensitive variable between cause (X) and effect (Y). The two models respectively exhibit consistent and contrary cause-effect directions in the cause-bias-effect SCM. After conducting unknown interventions on variables within the SCM, we can simulate some kinds of domain shifts for analysis. We then compare the adaptation speeds of two models across four shift scenarios. Additionally, we prove the connection between the adaptation speeds of the two models across all interventions.

Source-Free Domain Adaptive Fundus Image Segmentation with Class-Balanced Mean Teacher

This paper studies source-free domain adaptive fundus image segmentation which aims to adapt a pretrained fundus segmentation model to a target domain using unlabeled images. This is a challenging task because it is highly risky to adapt a model only using unlabeled data. Most existing methods tackle this task mainly by designing techniques to carefully generate pseudo labels from the model’s predictions and use the pseudo labels to train the model. While often obtaining positive adaption effects, these methods suffer from two major issues. First, they tend to be fairly unstable – incorrect pseudo labels abruptly emerged may cause a catastrophic impact on the model. Second, they fail to consider the severe class imbalance of fundus images where the foreground (e.g., cup) region is usually very small. This paper aims to address these two issues by proposing the Class-Balanced Mean Teacher (CBMT) model. CBMT addresses the unstable issue by proposing a weak-strong augmented mean teacher learning scheme where only the teacher model generates pseudo labels from weakly augmented images to train a student model that takes strongly augmented images as input. The teacher is updated as the moving average of the instantly trained student, which could be noisy. This prevents the teacher model from being abruptly impacted by incorrect pseudo-labels. For the class imbalance issue, CBMT proposes a novel loss calibration approach to highlight foreground classes according to global statistics. Experiments show that CBMT well addresses these two issues and outperforms existing methods on multiple benchmarks.

Citizen Science for the Sea with Information Technologies: An Open Platform for Gathering Marine Data and Marine Litter Detection from Leisure Boat Instruments

Data crowdsourcing is an increasingly pervasive and lifestyle-changing technology due to the flywheel effect that results from the interaction between the Internet of Things and Cloud Computing. This paper presents the Citizen Science for the Sea with Information Technologies (C4Sea-IT) framework. It is an open platform for gathering marine data from leisure boat instruments. C4Sea-IT aims to provide a coastal marine data gathering, moving, processing, exchange, and sharing platform using the existing navigation instruments and sensors for today’s leisure and professional vessels. In this work, a use case for the detection and tracking of marine litter is shown. The final goal is weather/ocean forecasts argumentation with Artificial Intelligence prediction models trained with crowdsourced data.

Long Reach Fibre Optic Distributed Acoustic Sensing using Enhanced Scattering Fibre

We report significant noise reduction in distributed acoustic sensing (DAS) link using enhanced-scatter fibre (ESF). The longest reach of 195km DAS link without inline amplifications is also demonstrated. We further present demonstration of simultaneous fibre-optic sensing and 400Gb/s data transmissions over 195km fibre using ESF.

OmniLabel: A Challenging Benchmark for Language-Based Object Detection

Language-based object detection is a promising direction towards building a natural interface to describe objects in images that goes far beyond plain category names. While recent methods show great progress in that direction, proper evaluation is lacking. With OmniLabel, we propose a novel task definition, dataset, and evaluation metric. The task subsumes standard and open-vocabulary detection as well as referring expressions. With more than 30K unique object descriptions on over 25K images, OmniLabel provides a challenge benchmark with diverse and complex object descriptions in a naturally open-vocabulary setting. Moreover, a key differentiation to existing benchmarks is that our object descriptions can refer to one, multiple or even no object, hence, providing negative examples in free-form text. The proposed evaluation handles the large label space and judges performance via a modified average precision metric, which we validate by evaluating strong language-based baselines. OmniLabel indeed provides a challenging test bed for future research on language-based detection.

LDP-Feat: Image Features with Local Differential Privacy

Modern computer vision services often require users to share raw feature descriptors with an untrusted server. This presents an inherent privacy risk, as raw descriptors may be used to recover the source images from which they were extracted. To address this issue, researchers recently proposed privatizing image features by embedding them within an affine subspace containing the original feature as well as adversarial feature samples. In this paper, we propose two novel inversion attacks to show that it is possible to (approximately) recover the original image features from these embeddings, allowing us to recover privacy-critical image content. In light of such successes and the lack of theoretical privacy guarantees afforded by existing visual privacy methods, we further propose the first method to privatize image features via local differential privacy, which, unlike prior approaches, provides a guaranteed bound for privacy leakage regardless of the strength of the attacks. In addition, our method yields strong performance in visual localization as a downstream task while enjoying the privacy guarantee.