First Field Demonstration of Automatic WDM Optical Path Provisioning over Alien Access Links for Data Center Exchange

We demonstrated under six minutes automatic provisioning of optical paths over field- deployed alien access links and WDM carrier links using commercial-grade ROADMs, whitebox mux-ponders, and multi-vendor transceivers. With channel probing, transfer learning, and Gaussian noise model, we achieved an estimation error (Q-factor) below 0.7 dB

Chris White Interviewed By Mike Vizard on Techstrong.AI

In this excellent Techstrong.ai videocast, Michael Vizard interviews our Christopher White, President of NEC Labs America, about #AI and its future. They discuss generative AI, its current hype, its potential impact on content creation and the augmentation of human abilities. Chris emphasizes that generative AI systems are not “thinking machines” but tools to enhance human capabilities.

Temporal Graph-Based Incident Analysis System for Internet of Things (ECML)

Internet-of-things (IoTs) deploy a massive number of sensors to monitor the system and environment. Anomaly detection on sensor data is an important task for IoT maintenance and operation. In real applications, the occurrence of a system-level incident usually involves hundreds of abnormal sensors, making it impractical for manual verification. The users require an efficient and effective tool to conduct incident analysis and provide critical information such as: (1) identifying the parts that suffered most damages and (2) finding out the ones that cause the incident. Unfortunately, existing methods are inadequate to fulfill these requirements because of the complex sensor relationship and latent anomaly influences in IoTs. To bridge the gap, we design and develop a Temporal Graph based Incident Analysis System (TGIAS) to help users’ diagnosis and reaction on reported anomalies. TGIAS trains a temporal graph to represent the anomaly relationship and computes severity ranking and causality score for each sensor. TGIAS provides the list of top k serious sensors and root-causes as output and illustrates the evidence on a graphical view. The system does not need any incident data for training and delivers high accurate analysis results in online time. TGIAS is equipped with a user-friendly interface, making it an effective tool for a broad range of IoTs.

Temporal Graph based Incident Analysis System for Internet of Things

Internet-of-things (IoTs) deploy a massive number of sensors to monitor the system and environment. Anomaly detection on sensor data is an important task for IoT maintenance and operation. In real applications, the occurrence of a system-level incident usually involves hundreds of abnormal sensors, making it impractical for manual verification. The users require an efficient and effective tool to conduct incident analysis and provide critical information such as: (1) identifying the parts that suffered most damages and (2) finding out the ones that cause the incident. Unfortunately, existing methods are inadequate to fulfill these requirements because of the complex sensor relationship and latent anomaly influences in IoTs. To bridge the gap, we design and develop a Temporal Graph based Incident Analysis System (TGIAS) to help users’ diagnosis and reaction on reported anomalies. TGIAS trains a temporal graph to represent the anomaly relationship and computes severity ranking and causality score for each sensor. TGIAS provides the list of top k serious sensors and root-causes as output and illustrates the detailed evidence on a graphical view. The system does not need any incident data for training and delivers high accurate analysis results in online time. TGIAS is equipped with a user-friendly interface, making it an effective tool for a broad range of IoTs.

Meet the NEC Labs America Intern Helping to Make Autonomous Vehicles Safer and More Secure

There’s much more to autonomous vehicle security than locking a car door. This summer, Kaiyuan Zhang, a 3rd-year computer science Ph.D. student at Purdue University, joined NEC Labs America’s popular intern program to help advance research around autonomous vehicle security. Each year, nearly 50 Ph.D. candidates join NEC Labs America’s innovative program, which centers on a collaborative environment where interns work directly with senior researchers and potential end-user customers.

AI/Fiber-Optic Combo Poised To Improve Telecommunications

Existing underground fiber-optic telecommunications cable networks that can be accessed through street manholes are helping a team at NEC Labs America improve wireless communications systems and the Internet of Things (IoT). “Hundreds of millions of fiber-optic cables are already there for communications purposes,” says Shaobo Han, a researcher at NEC Labs America who focuses on the design and development of machine learning and signal-processing techniques for real-world sensing applications. “We’re turning it all into a ‘thinking’ device, using the same cable that’s already there.”

Industrial Labs to Drive Disruptive Innovation for the Fourth Industrial Revolution

While the previous generation of industrial progress brought us new capabilities, efficiencies, and even delight through digital transformation, we’re entering a new era of innovation, opportunity, and disruption: the Fourth Industrial Revolution. What is the Fourth Industrial Revolution?

Deep Video Codec Control

Deep Video Codec Control Lossy video compression is commonly used when transmitting and storing video data. Unified video codecs (e.g., H.264 or H.265) remain the emph(Unknown sysvar: (de facto)) standard, despite the availability of advanced (neural) compression approaches. Transmitting videos in the face of dynamic network bandwidth conditions requires video codecs to adapt to vastly different compression strengths. Rate control modules augment the codec’s compression such that bandwidth constraints are satisfied and video distortion is minimized. While, both standard video codes and their rate control modules are developed to minimize video distortion w.r.t. human quality assessment, preserving the downstream performance of deep vision models is not considered. In this paper, we present the first end-to-end learnable deep video codec control considering both bandwidth constraints and downstream vision performance, while not breaking existing standardization. We demonstrate for two common vision tasks (semantic segmentation and optical flow estimation) and on two different datasets that our deep codec control better preserves downstream performance than using 2-pass average bit rate control while meeting dynamic bandwidth constraints and adhering to standardizations.

AutoTCL: Automated Time Series Contrastive Learning with Adaptive Augmentations

Read AutoTCL: Automated Time Series Contrastive Learning with Adaptive Augmentations publication. Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. Thus, although prevalent, contrastive learning with data augmentation has been less studied in the time series domain. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a parameterized augmentation method, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on benchmark datasets demonstrate the highly competitive results of our method, with an average 10.3% reduction in MSE and 7.0% in MAE over the leading baselines.

Meet The Disruptors: NEC’s Chris White On The Five Things You Need To Shake Up Your Industry | Authority Magazine

Read this fantastic interview with our President, Christopher White, with Authority Magazine, as he shares five things you need to shake up your industry based on his experience pushing the envelope in chemistry, computer science, quantum computing, and artificial intelligence. Chris leads our team to conduct disruptive research rather than just incremental research.