Source-Free Domain Adaptive Fundus Image Segmentation with Class-Balanced Mean Teacher

This paper studies source-free domain adaptive fundus image segmentation which aims to adapt a pretrained fundus segmentation model to a target domain using unlabeled images. This is a challenging task because it is highly risky to adapt a model only using unlabeled data. Most existing methods tackle this task mainly by designing techniques to carefully generate pseudo labels from the model’s predictions and use the pseudo labels to train the model. While often obtaining positive adaption effects, these methods suffer from two major issues. First, they tend to be fairly unstable – incorrect pseudo labels abruptly emerged may cause a catastrophic impact on the model. Second, they fail to consider the severe class imbalance of fundus images where the foreground (e.g., cup) region is usually very small. This paper aims to address these two issues by proposing the Class-Balanced Mean Teacher (CBMT) model. CBMT addresses the unstable issue by proposing a weak-strong augmented mean teacher learning scheme where only the teacher model generates pseudo labels from weakly augmented images to train a student model that takes strongly augmented images as input. The teacher is updated as the moving average of the instantly trained student, which could be noisy. This prevents the teacher model from being abruptly impacted by incorrect pseudo-labels. For the class imbalance issue, CBMT proposes a novel loss calibration approach to highlight foreground classes according to global statistics. Experiments show that CBMT well addresses these two issues and outperforms existing methods on multiple benchmarks.

Citizen Science for the Sea with Information Technologies: An Open Platform for Gathering Marine Data and Marine Litter Detection from Leisure Boat Instruments

Data crowdsourcing is an increasingly pervasive and lifestyle-changing technology due to the flywheel effect that results from the interaction between the Internet of Things and Cloud Computing. This paper presents the Citizen Science for the Sea with Information Technologies (C4Sea-IT) framework. It is an open platform for gathering marine data from leisure boat instruments. C4Sea-IT aims to provide a coastal marine data gathering, moving, processing, exchange, and sharing platform using the existing navigation instruments and sensors for today’s leisure and professional vessels. In this work, a use case for the detection and tracking of marine litter is shown. The final goal is weather/ocean forecasts argumentation with Artificial Intelligence prediction models trained with crowdsourced data.

Long Reach Fibre Optic Distributed Acoustic Sensing using Enhanced Scattering Fibre

We report significant noise reduction in distributed acoustic sensing (DAS) link using enhanced-scatter fibre (ESF). The longest reach of 195km DAS link without inline amplifications is also demonstrated. We further present demonstration of simultaneous fibre-optic sensing and 400Gb/s data transmissions over 195km fibre using ESF.

OmniLabel: A Challenging Benchmark for Language-Based Object Detection

Language-based object detection is a promising direction towards building a natural interface to describe objects in images that goes far beyond plain category names. While recent methods show great progress in that direction, proper evaluation is lacking. With OmniLabel, we propose a novel task definition, dataset, and evaluation metric. The task subsumes standard and open-vocabulary detection as well as referring expressions. With more than 30K unique object descriptions on over 25K images, OmniLabel provides a challenge benchmark with diverse and complex object descriptions in a naturally open-vocabulary setting. Moreover, a key differentiation to existing benchmarks is that our object descriptions can refer to one, multiple or even no object, hence, providing negative examples in free-form text. The proposed evaluation handles the large label space and judges performance via a modified average precision metric, which we validate by evaluating strong language-based baselines. OmniLabel indeed provides a challenging test bed for future research on language-based detection.

LDP-Feat: Image Features with Local Differential Privacy

Modern computer vision services often require users to share raw feature descriptors with an untrusted server. This presents an inherent privacy risk, as raw descriptors may be used to recover the source images from which they were extracted. To address this issue, researchers recently proposed privatizing image features by embedding them within an affine subspace containing the original feature as well as adversarial feature samples. In this paper, we propose two novel inversion attacks to show that it is possible to (approximately) recover the original image features from these embeddings, allowing us to recover privacy-critical image content. In light of such successes and the lack of theoretical privacy guarantees afforded by existing visual privacy methods, we further propose the first method to privatize image features via local differential privacy, which, unlike prior approaches, provides a guaranteed bound for privacy leakage regardless of the strength of the attacks. In addition, our method yields strong performance in visual localization as a downstream task while enjoying the privacy guarantee.

Efficient Controllable Multi-Task Architectures

We aim to train a multi-task model such that users can adjust the desired compute budget and relative importance of task performances after deployment, without retraining. This enables optimizing performance for dynamically varying user needs, without heavy computational overhead to train and save models for various scenarios. To this end, we propose a multi-task model consisting of a shared encoder and task-specific decoders where both encoder and decoder channel widths are slimmable. Our key idea is to control the task importance by varying the capacities of task-specific decoders, while controlling the total computational cost by jointly adjusting the encoder capacity. This improves overall accuracy by allowing a stronger encoder for a given budget, increases control over computational cost, and delivers high-quality slimmed sub-architectures based on user’s constraints. Our training strategy involves a novel `Configuration-Invariant Knowledge Distillation’ loss that enforces backbone representations to be invariant under different runtime width configurations to enhance accuracy. Further, we present a simple but effective search algorithm that translates user constraints to runtime width configurations of both the shared encoder and task decoders, for sampling the sub-architectures. The key rule for the search algorithm is to provide a larger computational budget to the higher preferred task decoder, while searching a shared encoder configuration that enhances the overall MTL performance. Various experiments on three multi-task benchmarks (PASCALContext, NYUDv2, and CIFAR100-MTL) with diverse backbone architectures demonstrate the advantage of our approach. For example, our method shows a higher controllability by 33.5% in the NYUD-v2 dataset over prior methods, while incurring much less compute cost.

Domain Generalization Guided by Gradient Signal to Noise Ratio of Parameters

Overfitting to the source domain is a common issue in gradient-based training of deep neural networks. To compensate for the over-parameterized models, numerous regularization techniques have been introduced such as those based on dropout. While these methods achieve significant improvements on classical benchmarks such as ImageNet, their performance diminishes with the introduction of domain shift in the test set i.e. when the unseen data comes from a significantly different distribution. In this paper, we move away from the classical approach of Bernoulli sampled dropout mask construction and propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network’s parameters. Specifically, at each training step, parameters with high GSNR will be discarded. Furthermore, we alleviate the burden of manually searching for the optimal dropout ratio by leveraging a meta-learning approach. We evaluate our method on standard domain generalization benchmarks and achieve competitive results on classification and face anti-spoofing problems.

Personalized Semantics Excitation for Federated Image Classification

Federated learning casts a light on the collaboration of distributed local clients with privacy protected to attain a more generic global model. However, significant distribution shift in input/label space across different clients makes it challenging to well generalize to all clients, which motivates personalized federated learning (PFL). Existing PFL methods typically customize the local model by fine-tuning with limited local supervision and the global model regularizer, which secures local specificity but risks ruining the global discriminative knowledge. In this paper, we propose a novel Personalized Semantics Excitation (PSE) mechanism to breakthrough this limitation by exciting and fusing personalized semantics from the global model during local model customization. Specifically, PSE explores channel-wise gradient differentiation across global and local models to identify important low-level semantics mostly from convolutional layers which are embedded into the client-specific training.In addition, PSE deploys the collaboration of global and local models to enrich high-level feature representations and facilitate the robustness of client classifier through a cross-model attention module. Extensive experiments and analysis on various image classification benchmarks demonstrate the effectiveness and advantage of our method over the state-of-the-art PFL methods.

MSI: Maximize Support-Set Information for Few-Shot Segmentation

Few-Shot Segmentation FSS (Few-shot segmentation) aims to segment a target class using a small number of labeled images (support set). To extract information relevant to the target class, a dominant approach in best performing FSS methods removes background features using a support mask. We observe that this feature excision through a limiting support mask introduces an information bottleneck in several challenging FSS cases, e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary sources of features to generate super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS methods. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves performance by visible margins and leads to faster convergence.

Few-Shot Video Classification via Representation Fusion and Promotion Learning

Recent few-shot video classification (FSVC) works achieve promising performance by capturing similarity across support and query samples with different temporal alignment strategies or learning discriminative features via Transformer block within each episode. However, they ignore two important issues: a) It is difficult to capture rich intrinsic action semantics from a limited number of support instances within each task. b) Redundant or irrelevant frames in videos easily weaken the positive influence of discriminative frames. To address these two issues, this paper proposes a novel Representation Fusion and Promotion Learning (RFPL) mechanism with two sub-modules: meta-action learning (MAL) and reinforced image representation (RIR). Concretely, during training stage, we perform online learning for seeking a task-shared meta-action bank to enrich task-specific action representation by injecting global knowledge. Besides, we exploit reinforcement learning to obtain the importance of each frame and refine the representation. This operation maximizes the contribution of discriminative frames to further capture the similarity of support and query samples from the same category. Our RFPL framework is highly flexible that it can be integrated with many existing FSVC methods. Extensive experiments show that RFPL significantly enhances the performance of existing FSVC models when integrated with them.