FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation

Read FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation publication. Imitation learning that replicates experts’ skills via their demonstrations has shown significant success in various decision-making tasks. However, two critical challenges still hinder the deployment of imitation learning techniques in real-world application scenarios. First, existing methods lack the intrinsic interpretability to explicitly explain the underlying rationale of the learned skill and thus making learned policy untrustworthy. Second, due to the scarcity of expert demonstrations from each end user (client), learning a policy based on different data silos is necessary but challenging in privacy-sensitive applications such as finance and healthcare. To this end, we present a privacy-preserved interpretable skill learning framework (FedSkill) that enables global policy learning to incorporate data from different sources and provides explainable interpretations to each local user without violating privacy and data sovereignty. Specifically, our proposed interpretable skill learning model can capture the varying patterns in the trajectories of expert demonstrations, and extract prototypical information as skills that provide implicit guidance for policy learning and explicit explanations in the reasoning process. Moreover, we design a novel aggregation mechanism coupled with the based skill learning model to preserve global information utilization and maintain local interpretability under the federated framework. Thoroughly experiments on three datasets and empirical studies demonstrate that our proposed FedSkill framework not only outperforms state-of-the-art imitation learning methods but also exhibits good interpretability under a federated setting. Our proposed FedSkill framework is the first attempt to bridge the gaps among federated learning, interpretable machine learning, and imitation learning.

Automatically Evaluating Opinion Prevalence in Opinion Summarization

When faced with a large number of product reviews, it is not clear that a human can remember all of them and weight opinions representatively to write a good reference summary. Wepropose an automatic metric to test the prevalence of the opinions that a summary expresses, based on counting the number of reviews that are consistent with each statement in the summary, while discrediting trivial or redundant statements. To formulate this opinion prevalence metric, we consider several existing methods to score the factual consistency of a summary statement with respect to each individual source review. On a corpus of Amazon product reviews, we gather multiple human judgments of the opinion consistency, to determinewhich automatic metric best expresses consistency in product reviews. Using the resulting opinion prevalence metric, we show that a human authored summary has only slightly betteropinion prevalence than randomly selected extracts from the source reviews, and previous extractive and abstractive unsupervised opinion summarization methods perform worse thanhumans. We demonstrate room for improvement with a greedy construction of extractive summaries with twice the opinion prevalence achieved by humans. Finally, we show that pre-processing source reviews by simplification can raise the opinion prevalence achieved by existing abstractive opinion summarization systems to the level of human performance

State-Aware Anomaly Detection for Massive Sensor Data in Internet of Things

With the escalating prevalence of Internet of Things (IoTs) in critical infrastructure, the requirement for efficient and effective anomaly detection solution becomes increasingly important. Unfortunately, most prior research works have largely overlooked to adapt detection criteria for different operational states, thereby rendering them inadequate when confronted with diverse and complex work states of IoTs. In this study, we address the challenges of IoT anomaly detection across various work states by introducing a novel model called Hybrid State Encoder-Decoder (HSED). HSED employs a two-step approach, beginning with identification and construction of a hybrid state for Key Performance Indicator (KPI) sensors based on their state attributes, followed by the detection of abnormal or failure events utilizing high-dimensional sensor data. Through the evaluation on real-world datasets, we demonstrate the superiority of HSED over state-of-the-art anomaly detection models. HSED can significantly enhance the efficiency, adaptability and reliability of IoTs and avoid potential risks of economic losses by IoT failures.

Improving Pseudo Labels for Open-Vocabulary Object Detection

Recent studies show promising performance in open-vocabulary object detection (OVD) using pseudo labels (PLs) from pretrained vision and language models (VLMs). However, PLs generated by VLMs are extremely noisy due to the gap between the pretraining objective of VLMs and OVD, which blocks further advances on PLs. In this paper, we aim to reduce the noise in PLs and propose a method called online Self-training And a Split-and-fusion head for OVD (SAS-Det). First, the self-training finetunes VLMs to generate high quality PLs while prevents forgetting the knowledge learned in the pretraining. Second, a split-and-fusion (SAF) head is designed to remove the noise in localization of PLs, which is usually ignored in existing methods. It also fuses complementary knowledge learned from both precise ground truth and noisy pseudo labels to boost the performance. Extensive experiments demonstrate SAS-Det is both efficient and effective. Our pseudo labeling is 3 times faster than prior methods. SAS-Det outperforms prior state-of-the-art models of the same scale by a clear margin and achieves 37.4 AP50 and 27.3 APr on novel categories of the COCO and LVIS benchmarks, respectively.

Personalized Federated Learning under Mixture Distributions

The recent trend towards Personalized Federated Learning (PFL) has garnered significant attention as it allows for the training of models that are tailored to each client while maintaining data privacy. However, current PFL techniques primarily focus on modeling the conditional distribution heterogeneity (i.e. concept shift), which can result in suboptimal performance when the distribution of input data across clients diverges (i.e. covariate shift). Additionally, these techniques often lack the ability to adapt to unseen data, further limiting their effectiveness in real-world scenarios. To address these limitations, we propose a novel approach, FedGMM, which utilizes Gaussian mixture models (GMM) to effectively fit the input data distributions across diverse clients. The model parameters are estimated by maximum likelihood estimation utilizing a federated Expectation-Maximization algorithm, which is solved in closed form and does not assume gradient similarity. Furthermore, FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification. Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.

Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation

Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation This work aims to assess how well a model performs under distribution shifts without using labels. While recent methods study prediction confidence, this work reports prediction dispersity is another informative cue. Confidence reflects whether the individual prediction is certain; dispersity indicates how the overall predictions are distributed across all categories. Our key insight is that a well-performing model should give predictions with high confidence and high dispersity. That is, we need to consider both properties so as to make more accurate estimates. To this end, we use the nuclear norm that has been shown to be effective in characterizing both properties. Extensive experiments validate the effectiveness of nuclear norm for various models (e.g., ViT and ConvNeXt), different datasets (e.g., ImageNet and CUB-200), and diverse types of distribution shifts (e.g., style shift and reproduction shift). We show that the nuclear norm is more accurate and robust in accuracy estimation than existing methods. Furthermore, we validate the feasibility of other measurements (e.g., mutual information maximization) for characterizing dispersity and confidence. Lastly, we investigate the limitation of the nuclear norm, study its improved variant under severe class imbalance, and discuss potential directions.

A Temperature-Informed Data-Driven Approach for Behind-the-Meter Solar Disaggregation

The lack of visibility to behind-the-meter (BTM) PVs causes many challenges to utilities. By constructing a dictionary of typical load patterns based on daily average temperatures and power consumptions, this paper proposes a temperature-informed data-driven approach for disaggregating BTM PV generation. This approach takes advantage of the high correlation between outside temperature and electricity consumption, as well as the high similarity between PV generation profiles. First, temperature-based fluctuation patterns are extracted from customer load demands without PV for each specific temperature range to build a temperature-based dictionary (TBD) in the offline stage. The dictionary is then used to disaggregate BTM PV in real-time. As a result, the proposed approach is more practical and provides a useful guideline in using temperature for operators in online mode. The proposed methodology has been verified using real smart meter data from London.

Retrospective : A Dynamically Configurable Coprocessor For Convolutional Neural Networks

In 2008, parallel computing posed significant challenges due to the complexities of parallel programming and the bottlenecks associated with efficient parallel execution. Inspired by the remarkable scalability achieved by networking and storage systems in handling extensive packet traffic and persistent data respectively by leveraging best-effort service, we proposed a new and fundamentally different approach of best-effort computing.Having observed that a broad spectrum of existing and emerging computing workloads were from applications that had an inherent forgiving nature [2], [5], we proposed best effort computing. The new approach resulted in disproportionate gains in power, energy and latency, while improving performance. While contemplating the concept of best-effort computing [2], we noticed the resurgence of convolutional neural networks, which generated approximate but acceptable outcomes for numerous recognition, mining, and synthesis tasks. The lead author of this retrospective had previously conducted research on neural networks for his doctoral dissertation over a decade ago, and the reemergence of neural networks proved both surprising and exciting. Recognizing the connection between best-effort computing and convolutional neural networks, in 2008 we embarked on developing a programmable and dynamically reconfigurable convolutional neural network capable of performing best effort computing for various machine learning tasks that inherently allow for multiple acceptable answers. This combination of our thoughts on best-effort computing and the gradual evolution of convolutional neural networks (deep neural networks emerged much later) culminated in our 2010 ISCA work on dynamically reconfigurable convolutional neural networks.

Unsupervised Anomaly Detection Under A Multiple Modeling Strategy Via Model Set Optimization Through Transfer Learning

Unsupervised anomaly detection approaches have been widely accepted in applications for industrial systems. Industrial systems often operate with multiple modes since they work for multiple purposes or under different conditions. In order to deal with the difficulty of anomaly detection due to multiple operating modes, multiple modeling strategies are employed. However, estimating the optimal set of models is a challenging problem due to the lack of supervision and computational burden. In this paper, we propose DeconAnomaly, a deep learning framework to estimate the optimal set of models using transfer learning for unsupervised anomaly detection under a multiple modeling strategy. It reduces computational burden with transfer learning and optimizes the number of models based on a surrogate metric of detection performance. The experimental results show clear advantages of DeconAnomaly.

FactionFormer: Context-Driven Collaborative Vision Transformer Models for Edge Intelligence

Edge Intelligence has received attention in the recent times for its potential towards improving responsiveness, reducing the cost of data transmission, enhancing security and privacy, and enabling autonomous decisions by edge devices. However, edge devices lack the power and compute resources necessary to execute most Al models. In this paper, we present FactionFormer, a novel method to deploy resource-intensive deep-learning models, such as vision transformers (ViT), on resource-constrained edge devices. Our method is based on a key observation: edge devices are often deployed in settings where they encounter only a subset of the classes that the resource intensive Al model is trained to classify, and this subset changes across deployments. Therefore, we automatically identify this subset as a faction, devise on-the fly a bespoke resource-efficient ViT called a modelette for the faction and set up an efficient processing pipeline consisting of a modelette on the device, a wireless network such as 5G, and the resource-intensive ViT model on an edge server, all of which work collaboratively to do the inference. For several ViT models pre-trained on benchmark datasets, FactionFormer’s modelettes are up to 4× smaller than the corresponding baseline models in terms of the number of parameters, and they can infer up to 2.5× faster than the baseline setup where every input is processed by the resource-intensive ViT on the edge server. Our work is the first of its kind to propose a device-edge collaborative inference framework where bespoke deep learning models for the device are automatically devised on-the-fly for most frequently encountered subset of classes.