Elixir: A System To Enhance Data Quality For Multiple Analytics On A Video Stream

IoT sensors, especially video cameras, are ubiquitously deployed around the world to perform a variety of computer vision tasks in several verticals including retail, health- care, safety and security, transportation, manufacturing, etc. To amortize their high deployment effort and cost, it is desirable to perform multiple video analytics tasks, which we refer to as Analytical Units (AUs), off the video feed coming out of every camera. As AUs typically use deep learning-based AI/ML models, their performance depend on the quality of the input video, and recent work has shown that dynamically adjusting the camera setting exposed by popular network cameras can help improve the quality of the video feed and hence the AU accuracy, in a single AU setting. In this paper, we first show that in a multi-AU setting, changing the camera setting has disproportionate impact on different AUs performance. In particular, the optimal setting for one AU may severely degrade the performance for another AU, and further the impact on different AUs varies as the environmental condition changes. We then present Elixir, a system to enhance the video stream quality for multiple analytics on a video stream. Elixir leverages Multi-Objective Reinforcement Learning (MORL), where the RL agent caters to the objectives from different AUs and adjusts the camera setting to simultaneously enhance the performance of all AUs. To define the multiple objectives in MORL, we develop new AU-specific quality estimator values for each individual AU. We evaluate Elixir through real-world experiments on a testbed with three cameras deployed next to each other (overlooking a large enterprise parking lot) running Elixir and two baseline approaches, respectively. Elixir correctly detects 7.1% (22,068) and 5.0% (15,731) more cars, 94% (551) and 72% (478) more faces, and 670.4% (4975) and 158.6% (3507) more persons than the default-setting and time-sharing approaches, respectively. It also detects 115 license plates, far more than the time-sharing approach (7) and the default setting (0).

AnB: Application-In-A-Box To Rapidly Deploy and Self-Optimize 5G Apps

We present Application in a Box (AnB) product concept aimed at simplifying the deployment and operation of remote 5G applications. AnB comes pre-configured with all necessary hardware and software components, including sensors like cameras, hardware and software components for a local 5G wireless network, and 5G-ready apps. Enterprises can easily download additional apps from an App Store. Setting up a 5G infrastructure and running applications on it is a significant challenge, but AnB is designed to make it fast, convenient, and easy, even for those without extensive knowledge of software, computers, wireless networks, or AI-based analytics. With AnB, customers only need to open the box, set up the sensors, turn on the 5G networking and edge computing devices, and start running their applications. Our system software automatically deploys and optimizes the pipeline of microservices in the application on a tiered computing infrastructure that includes device, edge, and cloud computing. Dynamic resource management, placement of critical tasks for low-latency response, and dynamic network bandwidth allocation for efficient 5G network usage are all automatically orchestrated. AnB offers cost savings, simplified setup and management, and increased reliability and security. We’ve implemented several real-world applications, such as collision prediction at busy traffic light intersections and remote construction site monitoring using video analytics. With AnB, deployment and optimization effort can be reduced from several months to just a few minutes. This is the first-of-its-kind approach to easing deployment effort and automating self-optimization of the application during system operation.

Improving Cross-Domain Detection with Self-Supervised Learning

Cross-Domain Detection (XDD) aims to train a domain-adaptive object detector using unlabeled images from a target domain and labeled images from a source domain. Existing approaches achieve this either by aligning the feature maps or the region proposals from the two domains, or by transferring the style of source images to that of target images. In this paper, rather than proposing another method following the existing lines, we introduce a new framework complementary to existing methods. Our framework unifies some popular Self-Supervised Learning (SSL) techniques (e.g., rotation angle prediction, strong/weak data augmentation, mean teacher modeling) and adapts them to the XDD task. Our basic idea is to leverage the unsupervised nature of these SSL techniques and apply them simultaneously across domains (source and target) and models (student and teacher). These SSL techniques can thus serve as shared bridges that facilitate knowledge transfer between domains. More importantly, as these techniques are independently applied in each domain, they are complementary to existing domain alignment techniques that relies on interactions between domains (e.g., adversarial alignment). We perform extensive analyses on these SSL techniques and show that they significantly improve the performance of existing methods. In addition, we reach comparable or even better performance than the state-of-the-art methods when integrating our framework with an old well-established method.

Source-Free Video Domain Adaptation with Spatial-Temporal-Historical Consistency Learning

Source-free domain adaptation (SFDA) is an emerging research topic that studies how to adapt a pretrained source model using unlabeled target data. It is derived from unsupervised domain adaptation but has the advantage of not requiring labeled source data to learn adaptive models. This makes it particularly useful in real-world applications where access to source data is restricted. While there has been some SFDA work for images, little attention has been paid to videos. Naively extending image-based methods to videos without considering the unique properties of videos often leads to unsatisfactory results. In this paper, we propose a simple and highly flexible method for Source-Free Video Domain Adaptation (SFVDA), which extensively exploits consistency learning for videos from spatial, temporal, and historical perspectives. Our method is based on the assumption that videos of the same action category are drawn from the same low-dimensional space, regardless of the spatio-temporal variations in the high-dimensional space that cause domain shifts. To overcome domain shifts, we simulate spatio-temporal variations by applying spatial and temporal augmentations on target videos, and encourage the model to make consistent predictions from a video and its augmented versions. Due to the simple design, our method can be applied to various SFVDA settings, and experiments show that our method achieves state-of-the-art performance for all the settings.

Q: How to Specialize Large Vision-Language Models to Data-Scarce VQA Tasks? A: Self-Train on Unlabeled Images!

Finetuning a large vision language model (VLM) on a target dataset after large scale pretraining is a dominant paradigm in visual question answering (VQA). Datasets for specialized tasks such as knowledge-based VQA or VQA in non natural-image domains are orders of magnitude smaller than those for general-purpose VQA. While collecting additional labels for specialized tasks or domains can be challenging, unlabeled images are often available. We introduce SelTDA (Self-Taught Data Augmentation), a strategy for finetuning large VLMs on small-scale VQA datasets. SelTDA uses the VLM and target dataset to build a teacher model that can generate question-answer pseudolabels directly conditioned on an image alone, allowing us to pseudolabel unlabeled images. SelTDA then finetunes the initial VLM on the original dataset augmented with freshly pseudolabeled images. We describe a series of experiments showing that our self-taught data augmentation increases robustness to adversarially searched questions, counterfactual examples, and rephrasings, it improves domain generalization, and results in greater retention of numerical reasoning skills. The proposed strategy requires no additional annotations or architectural modifications, and is compatible with any modern encoder-decoder multimodal transformer. Code available at https://github.com/codezakh/SelTDA

NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization

Monocular 3D object localization in driving scenes is a crucial task, but challenging due to its ill-posed nature. Estimating 3D coordinates for each pixel on the object surface holds great potential as it provides dense 2D-3D geometric constraints for the underlying PnP problem. However, high-quality ground truth supervision is not available in driving scenes due to sparsity and various artifacts of Lidar data, as well as the practical infeasibility of collecting per-instance CAD models. In this work, we present NeurOCS, a framework that uses instance masks and 3D boxes as input to learn 3D object shapes by means of differentiable rendering, which further serves as supervision for learning dense object coordinates. Our approach rests on insights in learning a category-level shape prior directly from real driving scenes, while properly handling single-view ambiguities. Furthermore, we study and make critical design choices to learn object coordinates more effectively from an object-centric view. Altogether, our framework leads to new state-of-the-art in monocular 3D localization that ranks 1st on the KITTI-Object benchmark among published monocular methods.

Exploring Compositional Visual Generation with Latent Classifier Guidance

Diffusion probabilistic models have achieved enormous success in the field of image generation and manipulation. In this paper, we explore a novel paradigm of using the diffusion model and classifier guidance in the latent semantic space for compositional visual tasks. Specifically, we train latent diffusion models and auxiliary latent classifiers to facilitate non-linear navigation of latent representation generation for any pre-trained generative model with a semantic latent space. We demonstrate that such conditional generation achieved by latent classifier guidance provably maximizes a lower bound of the conditional log probability during training. To maintain the original semantics during manipulation, we introduce a new guidance term, which we show is crucial for achieving compositionality. With additional assumptions, we show that the non-linear manipulation reduces to a simple latent arithmetic approach. We show that this paradigm based on latent classifier guidance is agnostic to pre-trained generative models, and present competitive results for both image generation and sequential manipulation of real and synthetic images. Our findings suggest that latent classifier guidance is a promising approach that merits further exploration, even in the presence of other strong competing methods.

Conditional Image-to-Video Generation with Latent Flow Diffusion Models

Conditional image-to-video (cI2V) generation aims to synthesize a new plausible video starting from an image (e.g., a person’s face) and a condition (e.g., an action class label like smile). The key challenge of the cI2V task lies in the simultaneous generation of realistic spatial appearance and temporal dynamics corresponding to the given image and condition. In this paper, we propose an approach for cI2V using novel latent flow diffusion models (LFDM) that synthesize an optical flow sequence in the latent space based on the given condition to warp the given image. Compared to previous direct-synthesis-based works, our proposed LFDM can better synthesize spatial details and temporal motion by fully utilizing the spatial content of the given image and warping it in the latent space according to the generated temporally-coherent flow. The training of LFDM consists of two separate stages: (1) an unsupervised learning stage to train a latent flow auto-encoder for spatial content generation, including a flow predictor to estimate latent flow between pairs of video frames, and (2) a conditional learning stage to train a 3D-UNet-based diffusion model (DM) for temporal latent flow generation. Unlike previous DMs operating in pixel space or latent feature space that couples spatial and temporal information, the DM in our LFDM only needs to learn a low-dimensional latent flow space for motion generation, thus being more computationally efficient. We conduct comprehensive experiments on multiple datasets, where LFDM consistently outperforms prior arts. Furthermore, we show that LFDM can be easily adapted to new domains by simply finetuning the image decoder. Our code is available at https://github.com/nihaomiao/CVPR23_LFDM.

Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction

Camouflaged object detection (COD) aims to address the tough issue of identifying camouflaged objects visually blended into the surrounding backgrounds. COD is a challenging task due to the intrinsic similarity of camouflaged objects with the background, as well as their ambiguous boundaries. Existing approaches to this problem have developed various techniques to mimic the human visual system. Albeit effective in many cases, these methods still struggle when camouflaged objects are so deceptive to the vision system. In this paper, we propose the FEature Decomposition and Edge Reconstruction (FEDER) model for COD. The FEDER model addresses the intrinsic similarity of foreground and background by decomposing the features into different frequency bands using learnable wavelets. It then focuses on the most informative bands to mine subtle cues that differentiate foreground and background. To achieve this, a frequency attention module and a guidance-based feature aggregation module are developed. To combat the ambiguous boundary problem, we propose to learn an auxiliary edge reconstruction task alongside the COD task. We design an ordinary differential equation-inspired edge reconstruction module that generates exact edges. By learning the auxiliary task in conjunction with the COD task, the FEDER model can generate precise prediction maps with accurate object boundaries. Experiments show that our FEDER model significantly outperforms state-of-the-art methods with cheaper computational and memory costs.

Beyond One Model Fits All: A Survey of Domain Specialization for Large Language Models

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a “chatbot”, and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.