ROMA: Resource Orchestration for Microservices-based 5G Applications

With the growth of 5G, Internet of Things (IoT), edge computing and cloud computing technologies, the infrastructure (compute and network) available to emerging applications (AR/VR, autonomous driving, industry 4.0, etc.) has become quite complex. There are multiple tiers of computing (IoT devices, near edge, far edge, cloud, etc.) that are connected with different types of networking technologies (LAN, LTE, 5G, MAN, WAN, etc.). Deployment and management of applications in such an environment is quite challenging. In this paper, we propose ROMA, which performs resource orchestration for microservices-based 5G applications in a dynamic, heterogeneous, multi-tiered compute and network fabric. We assume that only application-level requirements are known, and the detailed requirements of the individual microservices in the application are not specified. As part of our solution, ROMA identifies and leverages the coupling relationship between compute and network usage for various microservices and solves an optimization problem in order to appropriately identify how each microservice should be deployed in the complex, multi-tiered compute and network fabric, so that the end-to-end application requirements are optimally met. We implemented two real-world 5G applications in video surveillance and intelligent transportation system (ITS) domains. Through extensive experiments, we show that ROMA is able to save up to 90%, 55% and 44% compute and up to 80%, 95% and 75% network bandwidth for the surveillance (watchlist) and transportation application (person and car detection), respectively. This improvement is achieved while honoring the application performance requirements, and it is over an alternative scheme that employs a static and overprovisioned resource allocation strategy by ignoring the resource coupling relationships.

Opportunistic Temporal Fair Mode Selection and User Scheduling in Full-Duplex Systems

In-band full-duplex (FD) communication has emerged as one of the promising techniques to improve data rates in next generation wireless systems. Typical FD scenarios considered in the literature assume FD base stations (BSs) and half-duplex (HD) users activated either in uplink (UL) or downlink (DL), where inter-user interference (IUI) is treated as noise at the DL user. This paper considers more general FD scenarios where an arbitrary fraction of the users are capable of FD and/or they can perform successive interference cancellation (SIC) to mitigate IUI. Consequently, one user can be activated in either UL or DL (HD-UL and HD-DL modes), or simultaneously in both directions requiring self-interference mitigation (SIM) at that user (FD-SIM mode). Furthermore, two users can be scheduled, one in UL and the other in DL (both operating in HD), where the DL user can treat IUI as noise (FD-IN mode) or perform SIC to mitigate IUI (FD-SIC mode). This paper studies opportunistic mode selection and user scheduling under long-term and short-term temporal fairness in single-carrier and multi-carrier (OFDM) FD systems, with the goal of maximizing system utility (e.g. sum-rate). First, the feasible region of temporal demands is characterized for both long-term and short-term fairness. Subsequently, optimal temporal fair schedulers as well as practical low-complexity online algorithms are devised. Simulation results demonstrate that using SIC to mitigate IUI as well as having FD capability at users can improve FD throughput gains significantly especially, when user distribution is concentrated around a few hotspots.

Codebook Design for Composite Beamforming in Next-generation mmWave Systems

In pursuance of the unused spectrum in higher frequencies, millimeter wave (mmWave) bands have a pivotal role. However, the high path-loss and poor scattering associated with mmWave communications highlight the necessity of employing effective beamforming techniques. In order to efficiently search for the beam to serve a user and to jointly serve multiple users it is often required to use a composite beam which consists of multiple disjoint lobes. A composite beam covers multiple desired angular coverage intervals (ACIs) and ideally has maximum and uniform gain (smoothness) within each desired ACI, negligible gain (leakage) outside the desired ACIs, and sharp edges. We propose an algorithm for designing such ideal composite codebook by providing an analytical closed-form solution with low computational complexity. There is a fundamental trade-off between the gain, leakage and smoothness of the beams. Our design allows to achieve different values in such trade-off based on changing the design parameters. We highlight the shortcomings of the uniform linear arrays (ULAs) in building arbitrary composite beams. Consequently, we use a recently introduced twin-ULA (TULA) antenna structure to effectively resolve these inefficiencies. Numerical results are used to validate the theoretical findings.

DataXe: A System for Application Self-optimization in Serverless Edge Computing Environments

A key barrier to building performant, remotely managed and self-optimizing multi-sensor, distributed stream processing edge applications is high programming complexity. We recently proposed DataX [1], a novel platform that improves programmer productivity by enabling easy exchange, transformations, and fusion of data streams on virtualized edge computing infrastructure. This paper extends DataX to include (a) serverless computing that automatically scales stateful and stateless analytics units (AUs) on virtualized edge environments, (b) novel communication mechanisms that efficiently communicate data among analytics units, and (c) new techniques to promote automatic reuse and sharing of analytics processing across multiple applications in a lights out, serverless computing environment. Synthesizing these capabilities into a single platform has been substantially more transformative than any available stream processing system for the edge. We refer to this enhanced and efficient version of DataX as DataXe. To the best of our knowledge, this is the first serverless system for stream processing. For a real-world video analytics application, we observed that the performance of the DataXe implementation of the analytics application is about 3X faster than a standalone implementation of the analytics application with custom, handcrafted communication, multiprocessing and allocation of edge resources.

Multi-user Beam Alignment in Presence of Multi-path

To overcome the high pathloss and the intense shadowing in millimeterwave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mm Wave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi-path or at the least do not exploit such multi path to achieve diversity or increase robustness. In this paper, we propose an efficient BA schemes in presence of multi-path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives the feedback for all the scanning beams at the end of probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has an special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and reduced number of variables which is solved by using an efficient greedy algorithm.

Remote Drone Detection and Localization with Optical Fiber Microphones and Distributed Acoustic Sensing

We demonstrate the first fiber-optic drone detection method with ultra-highly sensitive optical microphones and distributed acoustic sensor. Accurate drone localization has been achieved through acoustic field mapping and data fusion.

Perimeter Intrusion Detection with Rayleigh Enhanced Fiber Using Telecom Cables as Sensing Backhaul

We report field test results of facility perimeter intrusion detection with distributed-fiber-sensing technology and backscattering-enhanced-fiber by using deployed telecom fiber cables as sensing backhaul. Various intrusive activities, such as walking/jumping at >100ft distance, are detected.

Employing Fiber Sensing and On-Premise AI Solutions for Cable Safety Protection over Telecom Infrastructure

We review the distributed-fiber-sensing field trial results over deployed telecom networks. With local AI processing, real-time detection, and localization of abnormal events with cable damage threat assessment are realized for cable self-protection.

Distributed Acoustic Sensing for Datacenter Optical Interconnects using Self-Homodyne Coherent Detection

We demonstrate distributed acoustic sensing (DAS) over a bidirectional datacenter link which uses self-homodyne coherent detection for the data signal. Frequency multiplexing allows sharing the optoelectronic hardware, and enables DAS as an auxiliary function.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses (OFC)

We report the first distributed acoustic sensing (DAS) results over>1,000 km on a field-lab hybrid link using chirped-pulses with correlation detection and 20× frequency-diversity, achieving a sensitivity of 100 pa/√Hz at 20-meters spatial resolution.