Distributed Fiber Sensor Network using Telecom Cables as Sensing Media: Applications

Distributed fiber optical systems (DFOS) allow deployed optical cables to monitor the ambient environment over wide geographic area. We review recent field trial results, and show how DFOS can be made compatible with passive optical networks (PONs).

Automatic Fine-Grained Localization of Utility Pole Landmarks on Distributed Acoustic Sensing Traces Based on Bilinear Resnets

In distributed acoustic sensing (DAS) on aerial fiber-optic cables, utility pole localization is a prerequisite for any subsequent event detection. Currently, localizing the utility poles on DAS traces relies on human experts who manually label the poles’ locations by examining DAS signal patterns generated in response to hammer knocks on the poles. This process is inefficient, error-prone and expensive, thus impractical and non-scalable for industrial applications. In this paper, we propose two machine learning approaches to automate this procedure for large-scale implementation. In particular, we investigate both unsupervised and supervised methods for fine-grained pole localization. Our methods are tested on two real-world datasets from field trials, and demonstrate successful estimation of pole locations at the same level of accuracy as human experts and strong robustness to label noises.

Optics and Biometrics

Forget passwords—identity verification can now be accomplished with the touch of a finger or in the blink of an eye as the biometrics field expands to encompass new techniques and application areas.

ECO: Edge-Cloud Optimization of 5G applications

Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an application-specific manner by leveraging knowledge about the application’s functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation.

Hopper: Multi-hop Transformer for Spatio-Temporal Reasoning

This paper considers the problem of spatiotemporal object-centric reasoning in videos. Central to our approach is the notion of object permanence, i.e., the ability to reason about the location of objects as they move through the video while being occluded, contained or carried by other objects. Existing deep learning based approaches often suffer from spatiotemporal biases when applied to video reasoning problems. We propose Hopper, which uses a Multi-hop Transformer for reasoning object permanence in videos. Given a video and a localization query, Hopper reasons over image and object tracks to automatically hop over critical frames in an iterative fashion to predict the final position of the object of interest. We demonstrate the effectiveness of using a contrastive loss to reduce spatiotemporal biases. We evaluate over CATER dataset and find that Hopper achieves 73.2% Top-1 accuracy using just 1 FPS by hopping through just a few critical frames. We also demonstrate Hopper can perform long-term reasoning by building a CATER-h dataset that requires multi-step reasoning to localize objects of interest correctly.

Disentangled Recurrent Wasserstein Auto-Encoder

Learning disentangled representations leads to interpretable models and facilitates data generation with style transfer, which has been extensively studied on static data such as images in an unsupervised learning framework. However, only a few works have explored unsupervised disentangled sequential representation learning due to challenges of generating sequential data. In this paper, we propose recurrent Wasserstein Autoencoder (R-WAE), a new framework for generative modeling of sequential data. R-WAE disentangles the representation of an input sequence into static and dynamic factors (i.e., time-invariant and time-varying parts). Our theoretical analysis shows that, R-WAE minimizes an upper bound of a penalized form of the Wasserstein distance between model distribution and sequential data distribution, and simultaneously maximizes the mutual information between input data and different disentangled latent factors, respectively. This is superior to (recurrent) VAE which does not explicitly enforce mutual information maximization between input data and disentangled latent representations. When the number of actions in sequential data is available as weak supervision information, R-WAE is extended to learn a categorical latent representation of actions to improve its disentanglement. Experiments on a variety of datasets show that our models outperform other baselines with the same settings in terms of disentanglement and unconditional video generation both quantitatively and qualitatively.

Ranking-based Convolutional Neural Network Models for Peptide-MHC Binding Prediction

T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC class-I molecules plays a vital role in the design of peptide vaccines. Many computational methods, for example, the state-of-the-art allele-specific method MHCflurry, have been developed to predict the binding affinities between peptides and MHC molecules. In this manuscript, we develop two allele-specific Convolutional Neural Network-based methods named ConvM and SpConvM to tackle the binding prediction problem. Specifically, we formulate the problem as to optimize the rankings of peptide-MHC bindings via ranking-based learning objectives. Such optimization is more robust and tolerant to the measurement inaccuracy of binding affinities, and therefore enables more accurate prioritization of binding peptides. In addition, we develop a new position encoding method in ConvM and SpConvM to better identify the most important amino acids for the binding events. We conduct a comprehensive set of experiments using the latest Immune Epitope Database (IEDB) datasets. Our experimental results demonstrate that our models significantly outperform the state-of-the-art methods including MHCflurry with an average percentage improvement of 6.70% on AUC and 17.10% on ROC5 across 128 alleles.

Deep Multi-Instance Contrastive Learning with Dual Attention for Anomaly Precursor Detection

Prognostics or early detection of incipient faults by leveraging the monitoring time series data in complex systems is valuable to automatic system management and predictive maintenance. However, this task is challenging. First, learning the multi-dimensional heterogeneous time series data with various anomaly types is hard. Second, the precise annotation of anomaly incipient periods is lacking. Third, the interpretable tools to diagnose the precursor symptoms are lacking. Despite some recent progresses, few of the existing approaches can jointly resolve these challenges. In this paper, we propose MCDA, a deep multi-instance contrastive learning approach with dual attention, to detect anomaly precursor. MCDA utilizes multi-instance learning to model the uncertainty of precursor period and employs recurrent neural network with tensorized hidden states to extract precursor features encoded in temporal dynamics as well as the correlations between different pairs of time series. A dual attention mechanism on both temporal aspect and time series variables is developed to pinpoint the time period and the sensors the precursor symptoms are involved in. A contrastive loss is designed to address the issue that annotated anomalies are few. To the best of our knowledge, MCDA is the first method studying the problem of ‘when’ and ‘where’ for the anomaly precursor detection simultaneously. Extensive experiments on both synthetic and real datasets demonstrate the effectiveness of MCDA.

AutoOD: Neural Architecture Search for Outlier Detection

Outlier detection is an important data mining task with numerous applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific task with complex data, the process of building an effective deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Moreover, while Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

Learning to Drop: Robust Graph Neural Network via Topological Denoising

Graph Neural Networks (GNNs) have shown to be powerful tools for graph analytics. The key idea is to recursively propagate and aggregate information along the edges of the given graph. Despite their success, however, the existing GNNs are usually sensitive to the quality of the input graph. Real-world graphs are often noisy and contain task-irrelevant edges, which may lead to suboptimal generalization performance in the learned GNN models. In this paper, we propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of GNNs by learning to drop task-irrelevant edges. PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks. To take into consideration the topology of the entire graph, the nuclear norm regularization is applied to impose the low-rank constraint on the resulting sparsified graph for better generalization. PTDNet can be used as a key component in GNN models to improve their performances on various tasks, such as node classification and link prediction. Experimental studies on both synthetic and benchmark datasets show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.