Shuffle and Attend: Video Domain Adaptation

We address the problem of domain adaptation in videos for the task of human action recognition. Inspired by image-based domain adaptation, we can perform video adaptation by aligning the features of frames or clips of source and target videos. However, equally aligning all clips is sub-optimal as not all clips are informative for the task. As the first novelty, we propose an attention mechanism which focuses on more discriminative clips and directly optimizes for video-level (cf. clip-level) alignment. As the backgrounds are often very different between source and target, the source background-corrupted model adapts poorly to target domain videos. To alleviate this, as a second novelty, we propose to use the clip order prediction as an auxiliary task. The clip order prediction loss, when combined with domain adversarial loss, encourages learning of representations which focus on the humans and objects involved in the actions, rather than the uninformative and widely differing (between source and target) backgrounds. We empirically show that both components contribute positively towards adaptation performance. We report state-of-the-art performances on two out of three challenging public benchmarks, two based on the UCF and HMDB datasets, and one on Kinetics to NEC-Drone datasets. We also support the intuitions and the results with qualitative results.

Object Detection with a Unified Label Space from Multiple Datasets

Given multiple datasets with different label spaces, the goal of this work is to train a single object detector predicting over the union of all the label spaces. The practical benefits of such an object detector are obvious and significant—application-relevant categories can be picked and merged form arbitrary existing datasets. However, naive merging of datasets is not possible in this case, due to inconsistent object annotations. Consider an object category like faces that is annotated in one dataset, but is not annotated in another dataset, although the object itself appears in the later’s images. Some categories, like face here, would thus be considered foreground in one dataset, but background in another. To address this challenge, we design a framework which works with such partial annotations, and we exploit a pseudo labeling approach that we adapt for our specific case. We propose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations and define a new challenging experimental setup for this task based on existing public datasets. We show improved performances compared to competitive baselines and appropriate adaptations of existing work

Learning to Optimize Domain Specific Normalization for Domain Generalization

We propose a simple but effective multi-source domain generalization technique based on deep neural networks by incorporating optimized normalization layers that are specific to individual domains. Our approach employs multiple normalization methods while learning separate affine parameters per domain. For each domain, the activations are normalized by a weighted average of multiple normalization statistics. The normalization statistics are kept track of separately for each normalization type if necessary. Specifically, we employ batch and instance normalizations in our implementation to identify the best combination of these two normalization methods in each domain. The optimized normalization layers are effective to enhance the generalizability of the learned model. We demonstrate the state-of-the-art accuracy of our algorithm in the standard domain generalization benchmarks, as well as viability to further tasks such as multi-source domain adaptation and domain generalization in the presence of label noise.

Learning Monocular Visual Odometry via Self-Supervised Long-Term Modeling

Monocular visual odometry (VO) suffers severely from error accumulation during frame-to-frame pose estimation. In this paper, we present a self-supervised learning method for VO with special consideration for consistency over longer sequences. To this end, we model the long-term dependency in pose prediction using a pose network that features a two-layer convolutional LSTM module. We train the networks with purely self-supervised losses, including a cycle consistency loss that mimics the loop closure module in geometric VO. Inspired by prior geometric systems, we allow the networks to see beyond a small temporal window during training, through a novel a loss that incorporates temporally distant ( g $O(100)$) frames. Given GPU memory constraints, we propose a stage-wise training mechanism, where the first stage operates in a local time window and the second stage refines the poses with a “global” loss given the first stage features. We demonstrate competitive results on several standard VO datasets, including KITTI and TUM RGB-D.

Improving Face Recognition by Clustering Unlabeled Faces in the Wild

While deep face recognition has benefited significantly from large-scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in controlled settings, where the labeled and unlabeled data sets have no overlapping identities by construction. This is not realistic in large-scale face recognition, where one must contend with such overlaps, the frequency of which increases with the volume of data. Ignoring identity overlap leads to significant labeling noise, as data from the same identity is split into multiple clusters. To address this, we propose a novel identity separation method based on extreme value theory. It is formulated as an out-of-distribution detection algorithm, and greatly reduces the problems caused by overlapping-identity label noise. Considering cluster assignments as pseudo-labels, we must also overcome the labeling noise from clustering errors. We propose a modulation of the cosine loss, where the modulation weights correspond to an estimate of clustering uncertainty. Extensive experiments on both controlled and real settings demonstrate our method’s consistent improvements over supervised baselines, e.g., 11.6% improvement on IJB-A verification.

Image Stitching and Rectification for Hand-Held Cameras

In this paper, we derive a new differential homography that can account for the scanline-varying camera poses in Rolling Shutter (RS) cameras, and demonstrate its application to carry out RS-aware image stitching and rectification at one stroke. Despite the high complexity of RS geometry, we focus in this paper on a special yet common input — two consecutive frames from a video stream, wherein the inter-frame motion is restricted from being arbitrarily large. This allows us to adopt simpler differential motion model, leading to a straightforward and practical minimal solver. To deal with non-planar scene and camera parallax in stitching, we further propose an RS-aware spatially-varying homogarphy field in the principle of As-Projective-As-Possible (APAP). We show superior performance over state-of-the-art methods both in RS image stitching and rectification, especially for images captured by hand-held shaking cameras.

Domain Adaptive Semantic Segmentation using Weak Labels

We propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain. The weak labels may be obtained based on a model prediction for unsupervised domain adaptation (UDA), or from a human oracle in a new weakly-supervised domain adaptation (WDA) paradigm for semantic segmentation. Using weak labels is both practical and useful, since (i) collecting image-level target annotations is comparably cheap in WDA and incurs no cost in UDA, and (ii) it opens the opportunity for category-wise domain alignment. Our framework uses weak labels to enable the interplay between feature alignment and pseudo-labeling, improving both in the process of domain adaptation. Specifically, we develop a weak-label classification module to enforce the network to attend to certain categories, and then use such training signals to guide the proposed category-wise alignment method. In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting.

BAFFLE: Decentralized Blockchain based Aggregator-Free Federated Learning

A key aspect of Federated Learning (FL) is the requirement of a centralized aggregator to maintain and update the global model. However, in many cases orchestrating a centralized aggregator might be infeasible due to numerous operational constraints. In this paper, we introduce BAFFLE, an aggregator free, blockchain driven, FL environment that is inherently decentralized. BAFFLE leverages Smart Contracts (SC) to coordinate the round delineation, model aggregation and update tasks in FL. BAFFLE boosts computational performance by decomposing the global parameter space into distinct chunks followed by a score and bid strategy. In order to characterize the performance of BAFFLE, we conduct experiments on a private Ethereum network and use the centralized and aggregator driven methods as our benchmark. We show that BAFFLE significantly reduces the gas costs for FL on the blockchain as compared to a direct adaptation of the aggregator based method. Our results also show that BAFFLE achieves high scalability and computational efficiency while delivering similar accuracy as the benchmark methods.

Stochastic Decision-Making Model for Aggregation of Residential Units with PV-Systems and Storages

Many residential energy consumers have installed photovoltaic (PV) panels and energy storage systems. These residential users can aggregate and participate in the energy markets. A stochastic decision making model for an aggregation of these residential units for participation in two-settlement markets is proposed in this paper. Scenarios are generated using Seasonal Autoregressive Integrated Moving Average (SARIMA) model and joint probability distribution function of the forecast errors to model the uncertainties of the real-time prices, PV generations and demands. The proposed scenario generation model of this paper treats forecast errors as random variable, which allows to reflect new information observed in the real-time market into scenario generation process without retraining SARIMA or re-fitting probability distribution functions over the forecast errors. This approach significantly improves the computational time of the proposed model. A simulation study is conducted for an aggregation of 6 residential units, and the results highlights the benefits of aggregation as well as the proposed stochastic decision-making model.

Robust Graph Representation Learning via Neural Sparsification

Graph representation learning serves as the core of important prediction tasks, ranging from product recommendation to fraud detection. Reallife graphs usually have complex information in the local neighborhood, where each node is described by a rich set of features and connects to dozens or even hundreds of neighbors. Despite the success of neighborhood aggregation in graph neural networks, task-irrelevant information is mixed into nodes’ neighborhood, making learned models suffer from sub-optimal generalization performance. In this paper, we present NeuralSparse, a supervised graph sparsification technique that improves generalization power by learning to remove potentially task-irrelevant edges from input graphs. Our method takes both structural and nonstructural information as input, utilizes deep neural networks to parameterize sparsification processes, and optimizes the parameters by feedback signals from downstream tasks. Under the NeuralSparse framework, supervised graph sparsification could seamlessly connect with existing graph neural networks for more robust performance. Experimental results on both benchmark and private datasets show that NeuralSparse can yield up to 7.2% improvement in testing accuracy when working with existing graph neural networks on node classification tasks.