Multi-Event Distributed Forwarding Sensing with Dual-Sensor Adaptive Beamforming

We present adaptive beamforming techniques to forward-transmission multi-event vibration sensing in environments with interference and jamming. Experimental validation over 100km fiber demonstrates significant improvements on signal reconstruction, noise reduction, and interference rejection from other locations.

High-Sensitivity Forward-Transmission Vibration Sensing for Real-World Event Detection in Urban Fiber Networks

Publication Date: 4/3/2025 Event: OFC 2025 Reference: Th4C.2: 1-3, 2025 Authors: Jian Fang, NEC Laboratories America, Inc.; Ming-Fang Huang, NEC Laboratories America, Inc.; Scott Kotrla, Verizon; Tiejun J. Xia, Verizon; Glenn A. Wellbrock, Verizon; Jeffrey A Mundt, Verizon; Ting Wang, NEC Laboratories America, Inc.; Yoshiaki Aono, NEC Corporation Abstract: We demonstrated a high-sensitivity forwarding-transmission vibration […]

Field Trials of Manhole Localization and Condition Diagnostics by Using Ambient Noise and Temperature Data with AI in a Real-Time Integrated Fiber Sensing System

Field trials of ambient noise-based automated methods for manhole localization and condition diagnostics using a real-time DAS/DTS integrated system were conducted. Crossreferencingmultiple sensing data resulted in a 94.7% detection rate and enhanced anomaly identification.

Field Tests of AI-Driven Road Deformation Detection Leveraging Ambient Noise over Deployed Fiber Networks

This study demonstrates an AI-driven method for detecting road deformations using Distributed Acoustic Sensing (DAS) over existing telecom fiber networks. Utilizingambient traffic noise, it enables real-time, long-term, and scalable monitoring for road safety.

Enhancing EDFAs Greybox Modeling in Optical Multiplex Sections Using Few-Shot Learning

We combine few-shot learning and grey-box modeling for EDFAs in optical lines, training a single EDFA model on 500 spectral loads and transferring it to other EDFAs using 4-8 samples, maintaining low OSNR prediction error.

Dual Privacy Protection for Distributed Fiber Sensing with Disaggregated Inference and Fine-tuning of Memory-Augmented Networks

We propose a memory-augmented model architecture with disaggregated computation infrastructure for fiber sensing event recognition. By leveraging geo-distributed computingresources in optical networks, this approach empowers end-users to customize models while ensuring dual privacy protection.

DiffOptics: A Conditional Diffusion Model for Fiber Optics Sensing Data Imputation

We present a generative AI framework based on a conditional diffusion model for distributed acoustic sensing (DAS) data imputation. The proposed DiffOptics model generates high-quality DAS data of various acoustic events using telecom fiber cables.

1.2 Tb/s/l Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders

We experimentally demonstrate real time mode division multiplexing free space optical communication with commercial 400G open and disaggregated transponders. As proof of concept,using HG00, HG10, and HG01 modes, we transmit 1.2 Tb/s/l (3´1l´400Gb/s) error free.

Real-Time Network-Aware Roadside LiDAR Data Compression

LiDAR technology has emerged as a pivotal tool in Intelligent Transportation Systems (ITS), providing unique capabilities that have significantly transformed roadside traffic applications. However, this transformation comes with a distinct challenge: the immense volume of data generated by LiDAR sensors. These sensors produce vast amounts of data every second, which can overwhelm both private and public 5G networks that are used to connect intersections. This data volume makes it challenging to stream raw sensor data across multiple intersections effectively. This paper proposes an efficient real-time compression method for roadside LiDAR data. Our approach exploits a special characteristic of roadside LiDAR data: the background points are consistent across all frames. We detect these background points and send them to edge servers only once. For each subsequent frame, we filter out the background points and compress only the remaining data. This process achieves significant temporal compression by eliminating redundant background data and substantial spatial compression by focusing only on the filtered points. Our method is sensor-agnostic, exceptionally fast, memory-efficient, and adaptable to varying network conditions. It offers a 2.5x increase in compression rates and improves application-level accuracy by 40% compared to current state-of-the-art methods.

Top 10 Most Legendary College Pranks of All-Time for April Fools’ Day

At NEC Labs America, we celebrate innovation in all forms—even the brilliantly engineered college prank. From MIT’s police car on the Great Dome to Caltech hacking the Rose Bowl, these legendary stunts showcase next-level planning, stealth, and technical genius. Our Top 10 list honors the creativity behind pranks that made history (and headlines). This April Fools’ Day, we salute the hackers, makers, and mischief-makers who prove that brilliance can be hilarious.