Coordinated Joint Multimodal Embeddings for Generalized Audio-Visual Zero-shot Classification and Retrieval of Videos

We present an audio-visual multimodal approach for the task of zero-shot learning (ZSL) for classification and retrieval of videos. ZSL has been studied extensively in the recent past but has primarily been limited to visual modality and to images. We demonstrate that both audio and visual modalities are important for ZSL for videos. Since a dataset to study the task is currently not available, we also construct an appropriate multimodal dataset with 33 classes containing 156, 416 videos, from an existing large scale audio event dataset. We empirically show that the performance improves by adding audio modality for both tasks of zero-shot classification and retrieval, when using multi-modal extensions of embedding learning methods. We also propose a novel method to predict the `dominant’ modality using a jointly learned modality attention network. We learn the attention in a semi-supervised setting and thus do not require any additional explicit labelling for the modalities. We provide qualitative validation of the modality specific attention, which also successfully generalizes to unseen test classes.

Active Adversarial Domain Adaptation

We propose an active learning approach for transferring representations across domains. Our approach, active adversarial domain adaptation (AADA), explores a duality between two related problems: adversarial domain alignment and importance sampling for adapting models across domains. The former uses a domain discriminative model to align domains, while the latter utilizes the model to weigh samples to account for distribution shifts. Specifically, our importance weight promotes unlabeled samples with large uncertainty in classification and diversity compared to la-beled examples, thus serving as a sample selection scheme for active learning. We show that these two views can be unified in one framework for domain adaptation and transfer learning when the source domain has many labeled examples while the target domain does not. AADA provides significant improvements over fine-tuning based approaches and other sampling methods when the two domains are closely related. Results on challenging domain adaptation tasks such as object detection demonstrate that the advantage over baseline approaches is retained even after hundreds of examples being actively annotated.

Tensorized LSTM with Adaptive Shared Memory for Learning Trends in Multivariate Time Series

The problem of learning and forecasting underlying trends in time series data arises in a variety of applications, such as traffic management, energy optimization, etc. In literature, a trend in time series is characterized by the slope and duration, and its prediction is then to forecast the two values of the subsequent trend given historical data of the time series. For this problem, existing approaches mainly deal with the case in univariate time series. However, in many real-world applications, there are multiple variables at play, and handling all of them at the same time is crucial for an accurate prediction. A natural way is to employ multi-task learning (MTL) techniques in which the trend learning of each time series is treated as a task. The key point of MTL is to learn task relatedness to achieve better parameter sharing, which however is challenging in trend prediction task. First, effectively modeling the complex temporal patterns in different tasks is hard as the temporal and spatial dimensions are entangled. Second, the relatedness among tasks may change over time. In this paper, we propose a neural network, DeepTrends, for multivariate time series trend prediction. The core module of DeepTrends is a tensorized LSTM with adaptive shared memory (TLASM). TLASM employs the tensorized LSTM to model the temporal patterns of long-term trend sequences in an MTL setting. With an adaptive shared memory, TLASM is able to learn the relatedness among tasks adaptively, based upon which it can dynamically vary degrees of parameter sharing among tasks. To further consider short-term patterns, DeepTrends utilizes a multi-task 1dCNN to learn the local time series features, and employs a task-specific sub-network to learn a mixture of long-term and short-term patterns for trend prediction. Extensive experiments on real datasets demonstrate the effectiveness of the proposed model.

Deep Unsupervised Binary Coding Networks for Multivariate Time Series Retrieval

Multivariate time series data are becoming increasingly ubiquitous in varies real-world applications such as smart city, power plant monitoring, wearable devices, etc. Given the current time series segment, how to retrieve similar segments within the historical data in an efficient and effective manner is becoming increasingly important. As it can facilitate underlying applications such as system status identification, anomaly detection, etc. Despite the fact that various binary coding techniques can be applied to this task, few of them are specially designed for multivariate time series data in an unsupervised setting. To this end, we present Deep Unsupervised Binary Coding Networks (DUBCNs) to perform multivariate time series retrieval. DUBCNs employ the Long Short-Term Memory (LSTM) encoder-decoder framework to capture the temporal dynamics within the input segment and consist of three key components, i.e., a temporal encoding mechanism to capture the temporal order of different segments within a mini-batch, a clustering loss on the hidden feature space to capture the hidden feature structure, and an adversarial loss based upon Generative Adversarial Networks (GANs) to enhance the generalization capability of the generated binary codes. Thoroughly empirical studies on three public datasets demonstrated that the proposed DUBCNs can outperform state-of-the-art unsupervised binary coding techniques.

Asymmetrically Hierarchical Networks with Attentive Interactions for Interpretable Review-based Recommendation

Recently, recommender systems have been able to emit substantially improved recommendations by leveraging user-provided reviews. Existing methods typically merge all reviews of a given user (item) into a long document, and then process user and item documents in the same manner. In practice, however, these two sets of reviews are notably different: users’ reviews reflect a variety of items that they have bought and are hence very heterogeneous in their topics, while an item’s reviews pertain only to that single item and are thus topically homogeneous. In this work, we develop a novel neural network model that properly accounts for this important difference by means of asymmetric attentive modules. The user module learns to attend to only those signals that are relevant with respect to the target item, whereas the item module learns to extract the most salient contents with regard to properties of the item. Our multi-hierarchical paradigm accounts for the fact that neither are all reviews equally useful, nor are all sentences within each review equally pertinent. Extensive experimental results on a variety of real datasets demonstrate the effectiveness of our method.

Temporal Context-aware Representation Learning for Question Routing

Question routing (QR) aims at recommending newly posted questions to the potential answerers who are most likely to answer the questions. The existing approaches that learn users’ expertise from their past question-answering activities usually suffer from challenges in two aspects: 1) multi-faceted expertise and 2) temporal dynamics in the answering behavior. This paper proposes a novel temporal context-aware model in multiple granularities of temporal dynamics that concurrently address the above challenges. Specifically, the temporal context-aware attention characterizes the answerer’s multi-faceted expertise in terms of the questions’ semantic and temporal information simultaneously. Moreover, the design of the multi-shift and multi-resolution module enables our model to handle temporal impact on different time granularities. Extensive experiments on six datasets from different domains demonstrate that the proposed model significantly outperforms competitive baseline models.

Interpretable Click-Through Rate Prediction through Hierarchical Attention

Click-through rate (CTR) prediction is a critical task in online advertising and marketing. For this problem, existing approaches, with shallow or deep architectures, have three major drawbacks. First, they typically lack persuasive rationales to explain the outcomes of the models. Unexplainable predictions and recommendations may be difficult to validate and thus unreliable and untrustworthy. In many applications, inappropriate suggestions may even bring severe consequences. Second, existing approaches have poor efficiency in analyzing high-order feature interactions. Third, the polysemy of feature interactions in different semantic subspaces is largely ignored. In this paper, we propose InterHAt that employs a Transformer with multi-head self-attention for feature learning. On top of that, hierarchical attention layers are utilized for predicting CTR while simultaneously providing interpretable insights of the prediction results. InterHAt captures high-order feature interactions by an efficient attentional aggregation strategy with low computational complexity. Extensive experiments on four public real datasets and one synthetic dataset demonstrate the effectiveness and efficiency of InterHAt.

Adversarial Learning of Privacy-Preserving and Task-Oriented Representations

Data privacy has emerged as an important issue as data-driven deep learning has been an essential component of modern machine learning systems. For instance, there could be a potential privacy risk of machine learning systems via the model inversion attack, whose goal is to reconstruct the input data from the latent representation of deep networks. Our work aims at learning a privacy-preserving and task-oriented representation to defend against such model inversion attacks. Specifically, we propose an adversarial reconstruction learning framework that prevents the latent representations decoded into original input data. By simulating the expected behavior of adversary, our framework is realized by minimizing the negative pixel reconstruction loss or the negative feature reconstruction (i.e., perceptual distance) loss. We validate the proposed method on face attribute prediction, showing that our method allows protecting visual privacy with a small decrease in utility performance. In addition, we show the utility-privacy trade-off with different choices of hyperparameter for negative perceptual distance loss at training, allowing service providers to determine the right level of privacy-protection with a certain utility performance. Moreover, we provide an extensive study with different selections of features, tasks, and the data to further analyze their influence on privacy protection.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

Detection of False Data Injection Attacks in Cyber-Physical Systems using Dynamic Invariants

Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node’s interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.