SkyCore: Moving Core to the Edge for Untethered and Reliable UAV-based LTE Networks

The advances in unmanned aerial vehicle (UAV) technology have empowered mobile operators to deploy LTE base stations (BSs) on UAVs, and provide on-demand, adaptive connectivity to hotspot venues as well as emergency scenarios. However, today’s evolved packet core (EPC) that orchestrates the LTE RAN faces fundamental limitations in catering to such a challenging, wireless and mobile UAV environment, particularly in the presence of multiple BSs (UAVs). In this work, we argue for and propose an alternate, radical edge EPC design, called SkyCore that pushes the EPC functionality to the extreme edge of the core network – collapses the EPC into a single, light-weight, self-contained entity that is co-located with each of the UAV BS. SkyCore incorporates elements that are designed to address the unique challenges facing such a distributed design in the UAV environment, namely the resource-constraints of UAV platforms, and the distributed management of pronounced UAV and UE mobility. We build and deploy a fully functional version of SkyCore on a two-UAV LTE network and showcase its (i) ability to interoperate with commercial LTE BSs as well as smartphones, (ii) support for both hotspot and standalone multi-UAV deployments, and (iii) superior control and data plane performance compared to other EPC variants in this environment.

TGNet: Learning to Rank Nodes in Temporal Graphs

Node ranking in temporal networks are often impacted by heterogeneous context from node content, temporal, and structural dimensions. This paper introduces TGNet , a deep-learning framework for node ranking in heterogeneous temporal graphs. TGNet utilizes a variant of Recurrent Neural Network to adapt context evolution and extract context features for nodes. It incorporates a novel influence network to dynamically estimate temporal and structural influence among nodes over time. To cope with label sparsity, it integrates graph smoothness constraints as a weak form of supervision. We show that the application of TGNet is feasible for large-scale networks by developing efficient learning and inference algorithms with optimization techniques. Using real-life data, we experimentally verify the effectiveness and efficiency of TGNet techniques. We also show that TGNet yields intuitive explanations for applications such as alert detection and academic impact ranking, as verified by our case study.

Collaborative Alert Ranking for Anomaly Detection

Given a large number of low-quality heterogeneous categorical alerts collected from an anomaly detection system, how to characterize the complex relationships between different alerts and deliver trustworthy rankings to end users? While existing techniques focus on either mining alert patterns or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand abnormal system behaviors. In this paper, we propose CAR, a collaborative alert ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a hierarchical Bayesian model to capture both short-term and long-term dependencies in each alert sequence. Then, an entity embedding-based model is proposed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into a unified optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments-using both synthetic and real-world enterprise security alert data-show that CAR can accurately identify true positive alerts and successfully reconstruct the attack scenarios at the same time.

Behavior-based Community Detection: Application to Host Assessment in Enterprise Information Networks

Behavior-based Community Detection: Application to Host Assessment in Enterprise Information Networks Community detection in complex networks is a fundamental problem that attracts much attention across various disciplines. Previous studies have been mostly focusing on external connections between nodes (i.e., topology structure) in the network whereas largely ignoring internal intricacies (i.e., local behavior) of each node. A pair of nodes without any interaction can still share similar internal behaviors. For example, in an enterprise information network, compromised computers controlled by the same intruder often demonstrate similar abnormal behaviors even if they do not connect with each other. In this paper, we study the problem of community detection in enterprise information networks, where large-scale internal events and external events coexist on each host. The discovered host communities, capturing behavioral affinity, can benefit many comparative analysis tasks such as host anomaly assessment. In particular, we propose a novel community detection framework to identify behavior-based host communities in enterprise information networks, purely based on large-scale heterogeneous event data. We continue proposing an efficient method for assessing host’s anomaly level by leveraging the detected host communities. Experimental results on enterprise networks demonstrate the effectiveness of our model.

NodeMerge: Template Based Efficient Data Reduction For Big-Data Causality Analysis

Today’s enterprises are exposed to sophisticated attacks, such as Advanced Persistent Threats~(APT) attacks, which usually consist of stealthy multiple steps. To counter these attacks, enterprises often rely on causality analysis on the system activity data collected from a ubiquitous system monitoring to discover the initial penetration point, and from there identify previously unknown attack steps. However, one major challenge for causality analysis is that the ubiquitous system monitoring generates a colossal amount of data and hosting such a huge amount of data is prohibitively expensive. Thus, there is a strong demand for techniques that reduce the storage of data for causality analysis and yet preserve the quality of the causality analysis. To address this problem, in this paper, we propose NodeMerge, a template based data reduction system for online system event storage. Specifically, our approach can directly work on the stream of system dependency data and achieve data reduction on the read-only file events based on their access patterns. It can either reduce the storage cost or improve the performance of causality analysis under the same budget. Only with a reasonable amount of resource for online data reduction, it nearly completely preserves the accuracy for causality analysis. The reduced form of data can be used directly with little overhead. To evaluate our approach, we conducted a set of comprehensive evaluations, which show that for different categories of workloads, our system can reduce the storage capacity of raw system dependency data by as high as 75.7 times, and the storage capacity of the state-of-the-art approach by as high as 32.6 times. Furthermore, the results also demonstrate that our approach keeps all the causality analysis information and has a reasonably small overhead in memory and hard disk.

Unsupervised Cross Domain Distance Metric Adaptation with Feature Transfer Network

Unsupervised domain adaptation is an attractive avenue to enhance the performance of deep neural networks in a target domain, using labels only from a source domain. However, two predominant methods along this line, namely, domain divergence reduction learning and semi-supervised learning, are not readily applicable when the source and target domains do not share a common label space. This paper addresses the above scenario by learning a representation space that retains discriminative power on both the (labeled) source and (unlabeled) target domains while keeping the representations for the two domains well-separated. Inspired by a theoretical error bound on the target domain, we first reformulate the disjoint classification, where the source and target domains correspond to non-overlapping class labels, to a verification task. To handle both within-domain and cross-domain verification tasks, we propose a Feature Transfer Network (FTN) that separates the target features from the source features while simultaneously aligning the target features with a transformed source feature space. Moreover, we present a non-parametric variation of multi-class entropy minimization loss to further boost the discriminative power of FTNs on the target domain. In experiments, we demonstrate the effectiveness of FTNs through state-of-the-art performances on a cross-ethnicity face recognition problem.

Learning Gibbs-Regularized Pushforward Density Estimators with a Symmetric KL Objective

We claim that there is currently no satisfactory way to regularize a generative adversarial network (GAN): neither the generator nor discriminator is particularly amenable to the imposition of inductive biases derived from domain knowledge. A generator is effectively a causal model of generation—one that usually bears no resemblance to the true generation process, which is most often unobserved or exceedingly difficult to model. Consider image generation: although it is plausible—e.g., from biological arguments—that convolutional neural networks constitute a good class of image classifiers, claiming CNNs are inherently well-suited to image generation is harder to justify. Likewise, it is clear that regularizing the discriminator is necessary to prevent trivial solutions; although recent methods have seen some success in applying generic smoothness regularizers to the discriminator [1, 5, 12], it is not obvious how to impose domain-specific structure on the discriminator in an optimal way

Distributed Temperature and Strain Sensing Using Brillouin Optical Time Domain Reflectometry Over a Few Mode Elliptical Core Optical Fiber

We propose a single-ended Brillouin-based sensor in elliptical-core few-mode optical fiber for multi-parameter measurement using spontaneous Brillouin scattering. Distributed sensing of temperature and strain is demonstrated over 0.5 km elliptical-core few-mode fiber.

ELI: Empowering LTE with Interference Awareness in Unlicensed Spectrum

The advent of LTE into the unlicensed spectrum has necessitated the understanding of its operational efficiency when sharing spectrum with different radio access technologies. Our study reveals that LTE, owing to its inherent transmission characteristics, suffers significant performance degradation in the presence of interference caused by hidden terminals. This motivates the need for interference-awareness in LTE’s channel access in unlicensed spectrum. To address this problem, we propose ELI. ELI’s three-pronged solution equips the LTE base station with novel techniques to: (a) accurately detect and measure interference caused by hidden terminals, (b) collect interference statistics from clients across different channels with affordable overhead, and (c) leverage interference-awareness to improve its channel access performance. Our evaluations show that ELI can achieve 1.5-2x throughput gains over baseline schemes. Finally, ELI is LTE-LAA/MulteFire-standard compliant and can be deployed over the existing LTE-LAA implementation without any modifications.

Optimization of Probabilistic Shaping Enabled Transceivers with Large Constellation Sizes for High Capacity Transmission

We study digital signal processing techniques to optimize the back-to-back performance of large probabilistic shaped constellations. We cover joint optimization of LDPC and constellation shaping, CD pre-compensation, clipping and I/Q imbalance compensation.