Protecting Your LLMs with Information Bottleneck

The advent of large language models (LLMs) has revolutionized the field of natural language processing, yet they might be attacked to produce harmful content. Despite efforts to ethically align LLMs, these are often fragile and can be circumvented by jailbreaking attacks through optimized or manual adversarial prompts. To address this, we introduce the Information Bottleneck Protector (IBProtector), a defense mechanism grounded in the information bottleneck principle, and we modify the objective to avoid trivial solutions. The IBProtector selectively compresses and perturbs prompts, facilitated by a lightweight and trainable extractor, preserving only essential information for the target LLMs to respond with the expected answer. Moreover, we further consider a situation where the gradient is not visible to be compatible with any LLM. Our empirical evaluations show that IBProtector outperforms current defense methods in mitigating jailbreak attempts, without overly affecting response quality or inference speed. Its effectiveness and adaptability across various attack methods and target LLMs underscore the potential of IBProtector as a novel, transferable defense that bolsters the security of LLMs without requiring modifications to the underlying models.

Improving Logits-based Detector without Logits from Black-box LLMs

The advent of Large Language Models (LLMs) has revolutionized text generation, producing outputs that closely mimic human writing. This blurring of lines between machine- and human-written text presents new challenges in distinguishing one from the other – a task further complicated by the frequent updates and closed nature of leading proprietary LLMs. Traditional logits-based detection methods leverage surrogate models for identifying LLM-generated content when the exact logits are unavailable from black-box LLMs. However, these methods grapple with the misalignment between the distributions of the surrogate and the often undisclosed target models, leading to performance degradation, particularly with the introduction of new, closed-source models. Furthermore, while current methodologies are generally effective when the source model is identified, they falter in scenarios where the model version remains unknown, or the test set comprises outputs from various source models. To address these limitations, we present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection even without logits from source LLMs. DALD is designed to align the surrogate model s distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations with minimal training investment. By leveraging corpus samples from publicly accessible outputs of advanced models such as ChatGPT, GPT-4, and Claude-3, DALD fine-tunes surrogate models to synchronize with unknown source model distributions effectively. Our approach performs SOTA in black-box settings on different advanced closed-source and open-source models. The versatility of our method enriches widely adopted zero-shot detection frameworks (DetectGPT, DNA-GPT, Fast-DetectGPT) with a plug-and-play enhancement feature. Extensive experiments validate that our methodology reliably secures high detection precision for LLM-generated text and effectively detects text from diverse model origins through a singular detector. Our method is also robust under the revised text attack and non-English texts.

DiCE-M: Distributed Code Generation and Execution for Marine Applications – An Edge-Cloud Approach

Edge computing has emerged as a transformative technology that reduces application latency, improves cost efficiency, enhances security, and enables large-scale deployment of applications across various domains. In environmental monitoring, systems such as MegaSense[49], use low-cost sensors to gather and process real-time air quality data through edge-cloud collaboration, highlighting the critical role of edge computing in enabling scalable, efficient solutions. Similarly, marine science increasingly requires real-time processing and analysis of marine data from remote, resource-constrained environments. In this paper, we extend the power of edge computing by integrating it with Generative Artificial Intelligence(GenAI),specifically large language models (LLMs), to address challenges in marine science applications. We propose DiCE-M (Distributed Code generation and Execution for Marine applications), a robust system that uses LLM to generate distributed code for marine applications and then utilizes a runtime to efficiently execute it on an edge+cloud computing infrastructure. Specifically, DiCE-M leverages edge computing to execute lightweight AI models locally on unmanned surface vehicles(USVs)while offloading complex tasks to the cloud, thus balancing computational load and enabling realtime monitoring in marine environments. We use marine litter identification as an example application to demonstrate the utility of DiCE-M. Our results show that DiCE-M reduces latency by more than 2X when marine litter is not detected and cuts cloud computing costs by more than half compared to traditional cloud-based approaches. By selectively cropping and transmitting relevant image portions, DiCE-M further improves bandwidth efficiency, making it a reliable and cost-effective solution for deploying AI-driven applications on resource-constrained USVs in dynamic marine environments.

Understanding Transcriptional Regulatory Redundancy by Learnable Global Subset Perturbations

Transcriptional regulation through cis-regulatory elements (CREs) is crucial for numerous biological functions, with its disruption potentially leading to various diseases. It is well-known that these CREs often exhibit redundancy, allowing them to compensate for each other in response to external disturbances, highlighting the need for methods to identify CRE sets that collaboratively regulate gene expression effectively. To address this, we introduce GRIDS, an in silico computational method that approaches the task as a global feature explanation challenge to dissect combinatorial CRE effects in two phases. First, GRIDS constructs a differentiable surrogate function to mirror the complex gene regulatory process, facilitating cross-translations in single-cell modalities. It then employs learnable perturbations within a state transition framework to offer global explanations, efficiently navigating the combinatorial feature landscape. Through comprehensive bench marks, GRIDS demonstrates superior explanatory capabilities compared to other leading methods. Moreover, GRIDS s global explanations reveal intricate regulatory redundancy across cell types and states, underscoring its potential to advance our understanding ofcellular regulation in biological research.

NEC Labs America Team Attending NeurIPS24 in Vancouver

NEC Labs America is proud to attend NeurIPS 2024 in Vancouver, Canada from December 10-15. Zachary Izzo will present Subgroup Discovery with the Cox Model, Shaobo Han will present VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks and Jonathan Warrell will present Discrete-Continuous Variational Optimization with Local Gradients.

Exploiting VLM Localizability and Semantics for Open Vocabulary Action Detection

Action detection aims to detect (recognize and localize) human actions spatially and temporally in videos. Existing approaches focus on the closed-set setting where an action detector is trained and tested on videos from a fixed set of action categories. However, this constrained setting is not viable in an open world where test videos inevitably come beyond the trained action categories. In this paper, we address the practical yet challenging Open-Vocabulary Action Detection (OVAD) problem. It aims to detect any action in test videos while training a model on a fixed set of action categories. To achieve such an open-vocabulary capability, we propose a novel method OpenMixer that exploits the inherent semantics and localizability of large vision-language models (VLM) within the family of query-based detection transformers (DETR). Specifically, the OpenMixer is developed by spatial and temporal OpenMixer blocks (S-OMB and T-OMB), and a dynamically fused alignment (DFA) module. The three components collectively enjoy the merits of strong generalization from pre-trained VLMs and end-to-end learning from DETR design. Moreover, we established OVAD benchmarks under various settings, and the experimental results show that the OpenMixer performs the best over baselines for detecting seen and unseen actions.

Matching Confidences and Softened Target Occurrences for Calibration

The problem of calibrating deep neural networks (DNNs) is gaining attention, as these networks are becoming central to many real-world applications. Different attempts have been made to counter the poor calibration of DNNs. Amongst others, train-time calibration methods have unfolded as an effective class for improving model calibration. Motivated by this, we propose a novel train-time calibration method that is built on a new auxiliary loss formulation, namely multiclass alignment of confidences with the gradually softened ground truth occurrences (MACSO). It is developed on the intuition that, for a class, the gradually softened ground truth occurrences distribution is a suitable non-zero entropy signal whose better alignment withthe predicted confidences distribution is positively correlated with reducing the model calibration error. In our train-time approach, besides simply aligning the two distributions, e.g., via their means or KL divergence, we propose to quantify the linear correlation between the two distributions, which preserves the relations among them, thereby further improving the calibration performance. Finally, we also reveal that MACSO posses desirable theoretical properties. Extensive results on several challenging datasets, featuring in and out-of-domain scenarios, class imbalanced problem, and a medical image classification task, validate the efficacy of our method against state-of-the-art train-time calibration methods.

Apply for a Summer 2025 Internship

Our exciting internship opportunities for this Summer 2025 are now available. We are looking for students pursuing advanced degrees in Computer Science and Electrical Engineering. Internships are typically 3 months long in duration. The benefits of working for us include the opportunity to quickly become part of a project team applying cutting-edge technology to industry-leading concepts. We have opportunities in Data Science & System Security, Integrated Systems, Media Analytics, Machine Learning, and Optical Networking & Sensing.

A Variational Graph Partitioning Approach to Modeling Protein Liquid-liquid Phase Separation

Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs. In this work, we introduce a GNN-based framework (graph-partitioned GNN [GP-GNN]) to partition the GNN graph to focus on the most relevant subgraphs. Our approach jointly learns task-dependent graph partitions and node representations, making it particularly effective when critical features reside within initially unidentified subgraphs. Protein liquid-liquid phase separation (LLPS) is a problem especially well-suited to GP-GNNs because intrinsically disordered regions (IDRs) are known to function as protein subdomains in it, playing a key role in the phase separation process. In this study, we demonstrate how GP-GNN accurately predicts LLPS by partitioning protein graphs into task-relevant subgraphs consistent with known IDRs. Our model achieves state-of-the-art accuracy in predicting LLPS and offers biological insights valuable for downstream investigation.

Variational methods for Learning Multilevel Genetic Algorithms using the Kantorovich Monad

Levels of selection and multilevel evolutionary processes are essential concepts in evolutionary theory, and yet there is a lack of common mathematical models for these core ideas. Here, we propose a unified mathematical framework for formulating and optimizing multilevel evolutionary processes and genetic algorithms over arbitrarily many levels based on concepts from category theory and population genetics. We formulate a multilevel version of the Wright-Fisher process using this approach, and we show that this model can be analyzed to clarify key features of multilevel selection. Particularly, we derive an extended multilevel probabilistic version of Price’s Equation via the Kantorovich Monad, and we use this to characterize regimes of parameter space within which selection acts antagonistically or cooperatively across levels. Finally, we show how our framework can provide a unified setting for learning genetic algorithms (GAs), and we show how we can use a Variational Optimization and a multi-level analogue of coalescent analysis to fit multilevel GAs to simulated data.