Bo Zong works for Salesforce.

Posts

Self-Attentive Attributed Network Embedding Through Adversarial Learning

Network embedding aims to learn the low-dimensional representations/embeddings of vertices which preserve the structure and inherent properties of the networks. The resultant embeddings are beneficial to downstream tasks such as vertex classification and link prediction. A vast majority of real-world networks are coupled with a rich set of vertex attributes, which could be potentially complementary in learning better embeddings. Existing attributed network embedding models, with shallow or deep architectures, typically seek to match the representations in topology space and attribute space for each individual vertex by assuming that the samples from the two spaces are drawn uniformly. The assumption, however, can hardly be guaranteed in practice. Due to the intrinsic sparsity of sampled vertex sequences and incompleteness in vertex attributes, the discrepancy between the attribute space and the network topology space inevitably exists. Furthermore, the interactions among vertex attributes, a.k.a cross features, have been largely ignored by existing approaches. To address the above issues, in this paper, we propose Nettention, a self-attentive network embedding approach that can efficiently learn vertex embeddings on attributed network. Instead of sample-wise optimization, Nettention aggregates the two types of information through minimizing the difference between the representation distributions in the low-dimensional topology and attribute spaces. The joint inference is encapsulated in a generative adversarial training process, yielding better generalization performance and robustness. The learned distributions consider both locality-preserving and global reconstruction constraints which can be inferred from the learning of the adversarially regularized autoencoders. Additionally, a multi-head self-attention module is developed to explicitly model the attribute interactions. Extensive experiments on benchmark datasets have verified the effectiveness of the proposed Nettention model on a variety of tasks, including vertex classification and link prediction.

Deep Co-Clustering

Co-clustering partitions instances and features simultaneously by leveraging the duality between them, and it often yields impressive performance improvement over traditional clustering algorithms. The recent development in learning deep representations has demonstrated the advantage in extracting effective features. However, the research on leveraging deep learning frameworks for co-clustering is limited for two reasons: 1) current deep clustering approaches usually decouple feature learning and cluster assignment as two separate steps, which cannot yield the task-specific feature representation; 2) existing deep clustering approaches cannot learn representations for instances and features simultaneously. In this paper, we propose a deep learning model for co-clustering called DeepCC. DeepCC utilizes the deep autoencoder for dimension reduction, and employs a variant of Gaussian Mixture Model (GMM) to infer the cluster assignments. A mutual information loss is proposed to bridge the training of instances and features. DeepCC jointly optimizes the parameters of the deep autoencoder and the mixture model in an end-to-end fashion on both the instance and the feature spaces, which can help the deep autoencoder escape from local optima and the mixture model circumvent the Expectation-Maximization (EM) algorithm. To the best of our knowledge, DeepCC is the first deep learning model for co-clustering. Experimental results on various dataseis demonstrate the effectiveness of DeepCC.

A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data

Nowadays, multivariate time series data are increasingly collected in various real-world systems, e.g., power plants, wearable devices, etc. Anomaly detection and diagnosis in multivariate time series refer to identifying abnormal status in certain time steps and pinpointing the root causes. Building such a system, however, is challenging since it not only requires to capture the temporal dependency in each time series, but also need encode the inter-correlations between different pairs of time series. In addition, the system should be robust to noise and provide operators with different levels of anomaly scores based upon the severity of different incidents. Despite the fact that a number of unsupervised anomaly detection algorithms have been developed, few of them can jointly address these challenges. In this paper, we propose a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED), to perform anomaly detection and diagnosis in multivariate time series data. Specifically, MSCRED first constructs multi-scale (resolution) signature matrices to characterize multiple levels of the system statuses in different time steps. Subsequently, given the signature matrices, a convolutional encoder is employed to encode the inter-sensor (time series) correlations and an attention based Convolutional Long-Short Term Memory (ConvLSTM) network is developed to capture the temporal patterns. Finally, based upon the feature maps which encode the inter-sensor correlations and temporal information, a convolutional decoder is used to reconstruct the input signature matrices and the residual signature matrices are further utilized to detect and diagnose anomalies. Extensive empirical studies based on a synthetic dataset and a real power plant dataset demonstrate that MSCRED can outperform state-of-the-art baseline methods.

TGNet: Learning to Rank Nodes in Temporal Graphs

Node ranking in temporal networks are often impacted by heterogeneous context from node content, temporal, and structural dimensions. This paper introduces TGNet , a deep-learning framework for node ranking in heterogeneous temporal graphs. TGNet utilizes a variant of Recurrent Neural Network to adapt context evolution and extract context features for nodes. It incorporates a novel influence network to dynamically estimate temporal and structural influence among nodes over time. To cope with label sparsity, it integrates graph smoothness constraints as a weak form of supervision. We show that the application of TGNet is feasible for large-scale networks by developing efficient learning and inference algorithms with optimization techniques. Using real-life data, we experimentally verify the effectiveness and efficiency of TGNet techniques. We also show that TGNet yields intuitive explanations for applications such as alert detection and academic impact ranking, as verified by our case study.

Deep Learning IP Network Representations

We present DIP, a deep learning-based framework to learn structural properties of the Internet, such as node clustering or distance between nodes. Existing embedding-based approaches use linear algorithms on a single source of data, such as latency or hop count information, to approximate the position of a node in the Internet. In contrast, DIP computes low-dimensional representations of nodes that preserve structural properties and non-linear relationships across multiple, heterogeneous sources of structural information, such as IP, routing, and distance information. Using a large real-world data set, we show that DIP learns representations that preserve the real-world clustering of the associated nodes and predicts the distance between them more than 30% better than a mean-based approach. Furthermore, DIP accurately imputes hop count distance to unknown hosts (i.e., not used in training) given only their IP addresses and routable prefixes. Our framework is extensible to new data sources and applicable to a wide range of problems in network monitoring and security.

Learning Deep Network Representations with Adversarially Regularized Autoencoders

The problem of network representation learning, also known as network embedding, arises in many machine learning tasks assuming that there exist a small number of variabilities in the vertex representations which can capture the “semantics” of the original network structure. Most existing network embedding models, with shallow or deep architectures, learn vertex representations from the sampled vertex sequences such that the low-dimensional embeddings preserve the locality property and/or global reconstruction capability. The resultant representations, however, are difficult for model generalization due to the intrinsic sparsity of sampled sequences from the input network. As such, an ideal approach to address the problem is to generate vertex representations by learning a probability density function over the sampled sequences. However, in many cases, such a distribution in a low-dimensional manifold may not always have an analytic form. In this study, we propose to learn the network representations with adversarially regularized autoencoders (NetRA). NetRA learns smoothly regularized vertex representations that well capture the network structure through jointly considering both locality-preserving and global reconstruction constraints. The joint inference is encapsulated in a generative adversarial training process to circumvent the requirement of an explicit prior distribution, and thus obtains better generalization performance. We demonstrate empirically how well key properties of the network structure are captured and the effectiveness of NetRA on a variety of tasks, including network reconstruction, link prediction, and multi-label classification.

LogLens: A Real-time Log Analysis System

Administrators of most user-facing systems depend on periodic log data to get an idea of the health and status of production applications. Logs report information, which is crucial to diagnose the root cause of complex problems. In this paper, we present a real-time log analysis system called LogLens that automates the process of anomaly detection from logs with no (or minimal) target system knowledge and user specification. In LogLens, we employ unsupervised machine learning based techniques to discover patterns in application logs, and then leverage these patterns along with the real-time log parsing for designing advanced log analytics applications. Compared to the existing systems which are primarily limited to log indexing and search capabilities, LogLens presents an extensible system for supporting both stateless and stateful log analysis applications. Currently, LogLens is running at the core of a commercial log analysis solution handling millions of logs generated from the large-scale industrial environments and reported up to 12096x man-hours reduction in troubleshooting operational problems compared to the manual approach.

Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection

Unsupervised anomaly detection on multi- or high-dimensional data is of great importance in both fundamental machine learning research and industrial applications, for which density estimation lies at the core. Although previous approaches based on dimensionality reduction followed by density estimation have made fruitful progress, they mainly suffer from decoupled model learning with inconsistent optimization goals and incapability of preserving essential information in the low-dimensional space. In this paper, we present a Deep Autoencoding Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection. Our model utilizes a deep autoencoder to generate a low-dimensional representation and reconstruction error for each input data point, which is further fed into a Gaussian Mixture Model (GMM). Instead of using decoupled two-stage training and the standard Expectation-Maximization (EM) algorithm, DAGMM jointly optimizes the parameters of the deep autoencoder and the mixture model simultaneously in an end-to-end fashion, leveraging a separate estimation network to facilitate the parameter learning of the mixture model. The joint optimization, which well balances autoencoding reconstruction, density estimation of latent representation, and regularization, helps the autoencoder escape from less attractive local optima and further reduce reconstruction errors, avoiding the need of pre-training. Experimental results on several public benchmark datasets show that, DAGMM significantly outperforms state-of-the-art anomaly detection techniques, and achieves up to 14% improvement based on the standard F1 score.