Boston University is a top-tier private research institution recognized for its global reach and rigorous academic standards. BU excels in areas such as biomedical engineering, public health, and AI, fostering innovation across disciplines. NEC Labs America collaborates with Boston University on signal processing, neural decoding, and brain-computer interfaces. Our work with BU bridges the fields of computational neuroscience and human-AI interaction. Please read about our latest news and collaborative publications with Boston University.

Posts

Learning Cross-Modal Contrastive Features for Video Domain Adaptation

Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been derived from the RGB image space. However, video data is usually associated with multi-modal information, e.g., RGB and optical flow, and thus it remains a challenge to design a better method that considers the cross-modal inputs under the cross-domain adaptation setting. To this end, we propose a unified framework for video domain adaptation, which simultaneously regularizes cross-modal and cross-domain feature representations. Specifically, we treat each modality in a domain as a view and leverage the contrastive learning technique with properly designed sampling strategies. As a result, our objectives regularize feature spaces, which originally lack the connection across modalities or have less alignment across domains. We conduct experiments on domain adaptive action recognition benchmark datasets, i.e., UCF, HMDB, and EPIC-Kitchens, and demonstrate the effectiveness of our components against state-of-the-art algorithms.

Inductive and Unsupervised Representation Learning on Graph Structured Objects

Inductive and unsupervised graph learning is a critical technique for predictive or information retrieval tasks where label information is difficult to obtain. It is also challenging to make graph learning inductive and unsupervised at the same time, as learning processes guided by reconstruction error based loss functions inevitably demand graph similarity evaluation that is usually computationally intractable. In this paper, we propose a general framework SEED (Sampling, Encoding, and Embedding Distributions) for inductive and unsupervised representation learning on graph structured objects. Instead of directly dealing with the computational challenges raised by graph similarity evaluation, given an input graph, the SEED framework samples a number of subgraphs whose reconstruction errors could be efficiently evaluated, encodes the subgraph samples into a collection of subgraph vectors, and employs the embedding of the subgraph vector distribution as the output vector representation for the input graph. By theoretical analysis, we demonstrate the close connection between SEED and graph isomorphism. Using public benchmark datasets, our empirical study suggests the proposed SEED framework is able to achieve up to 10% improvement, compared with competitive baseline methods.

Learning To Simulate

Simulation is a useful tool in situations where training data for machine learning models is costly to annotate or even hard to acquire. In this work, we propose a reinforcement learning-based method for automatically adjusting the parameters of any (non-differentiable) simulator, thereby controlling the distribution of synthesized data in order to maximize the accuracy of a model trained on that data. In contrast to prior art that hand-crafts these simulation parameters or adjusts only parts of the available parameters, our approach fully controls the simulator with the actual underlying goal of maximizing accuracy, rather than mimicking the real data distribution or randomly generating a large volume of data. We find that our approach (i) quickly converges to the optimal simulation parameters in controlled experiments and (ii) can indeed discover good sets of parameters for an image rendering simulator in actual computer vision applications.