The Chinese University of Hong Kong (CUHK) is a premier research institution in Asia, known for academic excellence and cross-cultural innovation. It leads in biomedical sciences, engineering, and artificial intelligence. NEC Labs America and the Chinese University of Hong Kong focus on deep learning for computer vision, semantic segmentation, and lightweight architectures. Our work is on robust, efficient, real-time visual perception systems. Please read about our latest news and collaborative publications with the Chinese University of Hong Kong.

Posts

Time Series Prediction and Classification using Silicon Photonic Neuron with Self-Connection

We experimentally demonstrated the real-time operation of a photonic neuron with a self-connection, a prerequisite for integrated recurrent neural networks (RNNs). After studying two applications, we propose a photonics-assisted platform for time series prediction and classification.

Austere Flash Caching with Deduplication and Compression

Modern storage systems leverage flash caching to boost I/O performance, and enhancing the space efficiency and endurance of flash caching remains a critical yet challenging issue in the face of ever-growing data-intensive workloads. Deduplication and compression are promising data reduction techniques for storage and I/O savings via the removal of duplicate content, yet they also incur substantial memory overhead for index management. We propose AustereCache, a new flash caching design that aims for memory-efficient indexing, while preserving the data reduction benefits of deduplication and compression. AustereCache emphasizes austere cache management and proposes different core techniques for efficient data organization and cache replacement, so as to eliminate as much indexing metadata as possible and make lightweight in-memory index structures viable. Trace-driven experiments show that our AustereCache prototype saves 69.9-97.0% of memory usage compared to the state-of-the-art flash caching design that supports deduplication and compression, while maintaining comparable read hit ratios and write reduction ratios and achieving high I/O throughput.