Data Science and System SecurityOur Data Science & System Security department aims to build novel big-data solutions and service platforms to simplify complex systems management. We develop new information technology that supports innovative applications, from big data analytics to the Internet of Things.

Our experimental and theoretical research includes many data science and systems research domains. These include but are not limited to time series mining, deep learning, NLP and large language models, graph mining, signal processing, and cloud computing. Our research aims to fully understand the dynamics of big data from complex systems, retrieve patterns to profile them and build innovative solutions to help the end user manage those systems. We have built several analytic engines and system solutions to process and analyze big data and support various detection, prediction, and optimization applications. Our research has led to award-winning NEC products and publications in top conferences.

Read our data science and system security news and publications from our world-class researchers.

Posts

NEC Laboratories America 2025: A Year of Disruptive Innovation

As 2025 comes to a close, NEC Laboratories America reflects on a year defined by scientific breakthroughs, global collaboration, and real-world impact. Our researchers advanced the state of the art across AI, optical networking and sensing, system security, and multimodal analytics, while expanding our intellectual property portfolio and presence at the world’s leading conferences. This year-in-review highlights the people, ideas, and partnerships that shaped 2025 and set the foundation for continued innovation in the year ahead.

NeurIPS 2025 in San Diego from November 30th to December 5th, 2025

NEC Laboratories America is heading to San Diego for NeurIPS 2025, where our researchers will present cutting-edge work spanning optimization, AI systems, language modeling, and trustworthy machine learning. This year’s lineup highlights breakthroughs in areas like multi-agent coordination, scalable training, efficient inference, and techniques for detecting LLM-generated text. Together, these contributions reflect our commitment to advancing fundamental science while building real-world solutions that strengthen industry and society. We’re excited to join the global AI community in San Diego from November 30 to December 5 to share our latest innovations.

xTime: Extreme Event Prediction with Hierarchical Knowledge Distillation and Expert Fusion

Extreme events frequently occur in real-world time series and often carry significant practical implications. In domains such as climate and healthcare, these events, such as floods, heatwaves, or acute medical episodes, can lead to serious consequences. Accurate forecasting of such events is therefore of substantial importance. Most existing time series forecasting models are optimized for overall performance within the prediction window, but often struggle to accurately predict extreme events, such as high temperatures or heart rate spikes. The main challenges are data imbalance and the neglect of valuable information contained in intermediate events that precede extreme events. In this paper, we propose xTime, a novel framework for extreme event forecasting in time series. xTime leverages knowledge distillation to transfer information from models trained on lower-rarity events, thereby improving prediction performance on rarer ones. In addition, we introduce a MoE mechanism that dynamically selects and fuses outputs from expert models across different rarity levels, which further improves the forecasting performance for extreme events. Experiments on multiple datasets show that xTime achieves consistent improvements, with forecasting accuracy on extreme events improving from 3% to 78%.

Correlation-aware Online Change Point Detection

Change point detection aims to identify abrupt shifts occurring at multiple points within a data sequence. This task becomes particularly challenging in the online setting, where different types of change can occur, including shifts in both the marginal and joint distributions of the data. In this paper, we address these challenges by tracking the Riemannian geometry of correlation matrices, allowing Riemannian metrics to compute the geodesic distance as an accurate measure of correlation dynamics.We introduce Rio-CPD, a correlation-aware online change point detection framework that integrates the Riemannian geometry of the manifold of symmetric positive definite matrices with the cumulative sum (CUSUM) statistic for detecting change points. Rio-CPD employs a novel CUSUM design by computing the geodesic distance between current observations and the Fréchet mean of prior observations. With appropriate choices of Riemannian metrics, Rio-CPD offers a simple yet effective and computationally efficient algorithm. We also provide a theoretical analysis on standard metrics for change point detection within Rio-CPD. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods on detection accuracy, average detection delay, and efficiency.

Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to making large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to summarize better and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.

Harnessing Vision Models for Time Series Analysis: A Survey

Time series analysis has witnessed the inspiring development from traditional autoregressive models, deep learning models, to recent Transformers and Large Language Models (LLMs). Efforts in leveraging vision models for time series analysis have also been made along the way but are less visible to the community due to the predominant research on sequence modeling in this domain. However, the discrepancy between continuous time series and the discrete token space of LLMs, and the challenges in explicitly modeling the correlations of variates in multivariate time series have shifted some research attentions to the equally successful Large Vision Models (LVMs) and Vision Language Models (VLMs). To fill the blank in the existing literature, this survey discusses the advantages of vision models over LLMs in time series analysis. It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy that answer the key research questions including how to encode time series as images and how to model the imaged time series for various tasks. Additionally, we address the challenges in the pre- and post-processing steps involved in this framework and outline future directions to further advance time series analysis with vision models.

Multi-modal Time Series Analysis: A Tutorial and Survey

Multi-modal time series analysis has recently emerged as a prominent research area, driven by the increasing availability of diverse data modalities, such as text, images, and structured tabular data from real-world sources. However, effective analysis of multi-modal time series is hindered by data heterogeneity, modality gap, misalignment, and inherent noise. Recent advancements in multi-modal time series methods have exploited the multi-modal context via cross-modal interactions based on deep learning methods, significantly enhancing various downstream tasks. In this tutorial and survey, we present a systematic and up-to-date overview of multi-modal time series datasets and methods. We first state the existing challenges of multi-modal time series analysis and our motivations, with a brief introduction of preliminaries. Then, we summarize the general pipeline and categorize existing methods through a unified cross-modal interaction framework encompassing fusion, alignment, and transference at different levels (i.e., input, intermediate, output), where key concepts and ideas are highlighted. We also discuss the real-world applications of multi-modal analysis for both standard and spatial time series, tailored to general and specific domains. Finally, we discuss future research directions to help practitioners explore and exploit multi-modal time series. The up-to-date resources are provided in the GitHub repository. https://github.com/UConn-DSIS/Multi-modal-Time-Series-Analysis.

ICeTEA: Mixture of Detectors for Metric-Log Anomaly Detection

Anomaly detection is essential for identifying unusual system behaviors and has wide-ranging applications, from fraud detection to system monitoring. In web servers, anomalies are typically detected using two types of data: metrics (numerical indicators of performance) and logs (records of system events). While correlations between metrics and logs in real-world scenarios highlight the need for joint analysis, which is termed the “metric-log anomaly detection” problem, it has not been fully explored yet due to inherent differences between metrics and logs. In this paper, we propose ICeTEA, a novel system for metric-log anomaly detection that integrates three detectors: a metric-log detector based on a multimodal Variational Autoencoder (VAE), and two individual metric and log detectors. By leveraging the ensemble technique to combine outputs of these detectors, ICeTEA enhances the effectiveness and robustness of metric-log anomaly detection. Case studies demonstrate two key functionalities of ICeTEA: data visualization and rankings of contributions to anomaly scores. Experiments demonstrate that our proposed ICeTEA accurately detects true anomalies while significantly reducing false positives.

Uncertainty Propagation on LLM Agent

Large language models (LLMs) integrated into multi-step agent systems enable complex decision-making processes across various applications. However, their outputs often lack reliability, making uncertainty estimation crucial. Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multi-step decision-making process and the dynamic interactions between agents and their environments. To address these limitations, we propose SAUP (Situation Awareness Uncertainty Propagation), a novel framework that propagates uncertainty through each step of an LLM-based agent’s reasoning process. SAUP incorporates situational awareness by assigning situational weights to each step’s uncertainty during the propagation. Our method, compatible with various one-step uncertainty estimation techniques, provides a comprehensive and accurate uncertainty measure. Extensive experiments on benchmark datasets demonstrate that SAUP significantly outperforms existing state-of-the-art methods, achieving up to 20% improvement in AUROC.

Exploring Multi-Modal Data with Tool-Augmented LLM Agents for Precise Causal Discovery

Causal discovery is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multimodal data. To bridge the gap, we introduce MATMCD, a multi-agent system powered by tool-augmented LLMs. MATMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven reasoning. The proposed design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery