Data Science and System SecurityOur Data Science & System Security department aims to build novel big-data solutions and service platforms to simplify complex systems management. We develop new information technology that supports innovative applications, from big data analytics to the Internet of Things.

Our experimental and theoretical research includes many data science and systems research domains. These include but are not limited to time series mining, deep learning, NLP and large language models, graph mining, signal processing, and cloud computing. Our research aims to fully understand the dynamics of big data from complex systems, retrieve patterns to profile them and build innovative solutions to help the end user manage those systems. We have built several analytic engines and system solutions to process and analyze big data and support various detection, prediction, and optimization applications. Our research has led to award-winning NEC products and publications in top conferences.

Read our data science and system security news and publications from our world-class researchers.

Posts

Co-Regularized Deep Multi-Network Embedding

Network embedding aims to learn a low-dimensional vector representation for each node in the social and information networks, with the constraint to preserve network structures. Most existing methods focus on single network embedding, ignoring the relationship between multiple networks. In many real-world applications, however, multiple networks may contain complementary information, which can lead to further refined node embeddings. Thus, in this paper, we propose a novel multi-network embedding method, DMNE. DMNE is flexible. It allows different networks to have different sizes, to be (un)weighted and (un)directed. It leverages multiple networks via cross-network relationships between nodes in different networks, which may form many-to-many node mappings, and be associated with weights. To model the non-linearity of the network data, we develop DMNE to have a new deep learning architecture, which coordinates multiple neural networks (one for each input network data) with a co-regularized loss function. With multiple layers of non-linear mappings, DMNE progressively transforms each input network to a highly non-linear latent space, and in the meantime, adapts different spaces to each other through a co-regularized learning schema. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.

Towards a Timely Causality Analysis for Enterprise Security

The increasingly sophisticated Advanced Persistent Threat (APT) attacks have become a serious challenge for enterprise IT security. Attack causality analysis, which tracks multi-hop causal relationships between files and processes to diagnose attack provenances and consequences, is the first step towards understanding APT attacks and taking appropriate responses. Since attack causality analysis is a time-critical mission, it is essential to design causality tracking systems that extract useful attack information in a timely manner. However, prior work is limited in serving this need. Existing approaches have largely focused on pruning causal dependencies totally irrelevant to the attack, but fail to differentiate and prioritize abnormal events from numerous relevant, yet benign and complicated system operations, resulting in long investigation time and slow responses.