Diana Di Luccio works at University of Napoli, Parthenope.

Posts

G-Litter Marine Litter Dataset Augmentation with Diffusion Models and Large Language Models on GPU Acceleration

Marine litter detection is crucial for environmental monitoring, yet the imbalance in existing datasets limits model performance in identifying various types of waste accurately. This paper presents an efficient data augmentation pipeline that combines generative diffusion models (e.g., Stable Diffusion) and Large Language Models (LLMs) to expand the G-Litter dataset, a marine litter dataset designed for autonomous detection in heterogeneous environments. Leveraging scalable diffusion models for image generation and Alpaca LLMs for diverse prompt generation, our approach augments underrepresented classes by generating over 200 additional images per class, significantly improving the dataset’s balance. Training G-Litter augmented dataset using YOLOv8 for object detection demonstrated an increase in detection performance, improving recall by 7.82% and mAP50 by 3.87% (compared with baseline results). This study emphasizes the potential for combining generative AI with HPC resources to automate data augmentation on large-scale, unstructured datasets, particularly in edge computing contexts for real-time marine monitoring. The models were tested on real videos captured during simulated missions, demonstrating a superior ability to detect submerged objects in dynamic scenarios. These results highlight the potential of generative AI techniques to improve dataset quality and detection model performance, laying the foundation for further expansion in real-time marine monitoring.

Improving Real-time Data Streams Performance on Autonomous Surface Vehicles using DataX

In the evolving Artificial Intelligence (AI) era, the need for real-time algorithm processing in marine edge environments has become a crucial challenge. Data acquisition, analysis, and processing in complex marine situations require sophisticated and highly efficient platforms. This study optimizes real-time operations on a containerized distributed processing platform designed for Autonomous Surface Vehicles (ASV) to help safeguard the marine environment. The primary objective is to improve the efficiency and speed of data processing by adopting a microservice management system called DataX. DataX leverages containerization to break down operations into modular units, and resource coordination is based on Kubernetes. This combination of technologies enables more efficient resource management and real-time operations optimization, contributing significantly to the success of marine missions. The platform was developed to address the unique challenges of managing data and running advanced algorithms in a marine context, which often involves limited connectivity, high latencies, and energy restrictions. Finally, as a proof of concept to justify this platform’s evolution, experiments were carried out using a cluster of single-board computers equipped with GPUs, running an AI-based marine litter detection application and demonstrating the tangible benefits of this solution and its suitability for the needs of maritime missions.